When Ozempic And Wegovy Fail To Work- Why GLP-1 Drugs Aren’t The Magic Bullet For Everyone
Ozempic and Wegovy have received a lot of publicity as revolutionizing treatment options for obesity. Both medications form a class of GLP-1 receptor agonists, which mimic a hormone in the body called glucagon-like peptide-1 and are involved in the regulation of appetite and blood sugar. Indeed, in initial clinical studies, the majority of those on the drugs lost 15% to 22% of body weight, hence much optimism. For most patients, these medications are underwhelming for about 20% of patients due to minimal weight loss or other challenges.
Take a closer look at why the weight loss drugs may not work for everyone, together with what options exist when they don't deliver the expected outcomes.
While GLP-1 receptor agonists have produced phenomenal responses in a majority of patients, it remains a reality that these drugs work differently for different people. Here's why:
1. Genetic and Hormonal Variability
Weight loss medications interact with complex systems in the body that differ from person to person. Genetics, hormones, and individual brain responses to energy regulation play significant roles in determining how a person responds to drugs like Ozempic and Wegovy.
2. Underlying Medical Conditions
Other conditions, such as sleep apnea, may be prevalent and prevent or delay the achievement of weight loss goals. Prescription drugs like antidepressants, steroids, or contraceptives are other medications that can nullify weight loss medication benefits.
3. Unrealistic Expectations
Often, they come to these medications with enormous hopes; expecting the promised rapid and dramatic weight loss. Progress creates disappointment if it has not stalled. In patients who rigidly follow recommended lifestyle modifications, frustration and disappointment are most common.
For most patients, the effectiveness of GLP-1 receptor agonists is evident within a few weeks of treatment. Weight loss typically begins within a few weeks of initiating therapy and tends to increase with dosage. However, some patients respond very little, if at all, despite strict adherence to their regimen.
For nonresponders, this can feel like a dead end. However, understanding the unique complexities of obesity is essential. This condition stems from brain dysfunction, and the pathways that contribute to weight regulation differ among individuals.
When Ozempic or Wegovy doesn’t yield desired results, there are still many paths to explore:
For example, some patients who don't respond well to one GLP-1 receptor agonist might find success with another drug in the same class. Newer medications, such as Zepbound, target other hormone pathways and seem promising even for those not responsive to earlier drugs.
While there is much to say about newer drugs, older treatments can still be useful and work for some patients. One can also seek the help of a medical provider specializing in obesity treatments in order to identify the best alternatives.
Diet, exercise, sleep, and stress management continue to be integral components of any weight loss program. New changes may be small but can make an enormous difference in one's health and success.
It is a complex disorder, and most patients should receive a multidisciplinary treatment. Collaboration with an obesity-aware doctor may mean access to tailored treatment plans, ranging from psychological support all the way to metabolic testing, and many others.
For others, side effects like nausea, vomiting, or diarrhea hinder them from continuing with these drugs. These symptoms often reduce as the body becomes accustomed, but for some, they might be severe enough to stop treatment altogether. In those instances, alternative drugs or procedures become vital to find.
Another largely unexplored area relates to GLP-1 drugs' long-term effects on the brain's regulation of hunger and satiety. Although GLP-1 drugs suppress appetite and can lead to effective weight loss, emerging research suggests that they may also affect brain reward mechanisms, changing the way patients experience foods.
This aspect could prove of paramount significance in the future treatment of obesity. Perhaps GLP-1 receptor agonists do indeed affect and rewire the brain's reward pathways and will thus provide sustained benefits beyond discontinuation. However, more research is required to understand this phenomenon fully.
While for many, Ozempic and Wegovy have revolutionized obesity treatment, these are certainly not a one size fits all. Nonresponders need not lose hope- alternative strategies and medications abound. A consultation with an obesity expert healthcare provider is essential to put together a comprehensive, tailored treatment plan.
The route toward effective weight loss may be challenging, but with the evolution of obesity medicine and a better understanding of individual needs, there is a path forward for everyone.
Credits: Canva
Bird flu viruses pose a particular danger to people because they can continue multiplying even at temperatures that would normally stop most infections. Fever is one of the body’s natural ways to slow viruses, yet new research from the universities of Cambridge and Glasgow shows that avian strains can survive what should be a hostile environment.
The study, published in Science, identifies a key gene that influences how well a virus copes with heat. This same gene moved into human flu strains during the 1957 and 1968 pandemics, allowing those viruses to spread more easily.
Human influenza viruses infect millions each year. The seasonal strains we see most often fall under influenza A and tend to do well in the cooler temperatures of the upper respiratory tract, which is close to 33°C. They are less suited to the warmer, deeper parts of the lungs, where temperatures reach about 37°C.
As per Science Daily, when the body cannot slow an infection, the virus continues to multiply and spread, which can lead to more serious illness. Fever acts as a protective response, pushing body temperature as high as 41°C. Until now, the exact reason why fever slows some viruses but not others has been unclear.
Avian influenza behaves differently. These viruses usually grow in the lower respiratory tract, and in their natural hosts, such as ducks or seagulls, they often infect the gut. Temperatures in these areas can reach 40°C to 42°C, which helps explain their greater tolerance to heat.
If left unchecked, a virus can move through the body and cause significant harm. Fever is one of the body’s most familiar defence responses and can raise the core temperature to levels that inhibit many pathogens. Scientists have long known that some viruses withstand these temperatures, but the reason behind this resistance has remained uncertain.
Avian flu strains show a clear advantage in hotter environments. They thrive in the lower airways and, in birds, survive in the high heat of the gut. These features distinguish them from human influenza strains, which prefer cooler tissue.
Earlier studies in cell cultures hinted that avian flu copes better with fever-range temperatures than human strains. The new research offers direct evidence from animal experiments, helping explain why fever is effective against some types of influenza but far less useful against others.
Researchers from Cambridge and Glasgow recreated fever-like conditions in mice to examine how different viruses responded. They worked with a lab-adapted human influenza strain known as PR8, which does not pose a threat to people.
Mice do not typically develop a fever from influenza A, so the scientists raised the temperature of the environment to lift the animals’ body temperature.
The findings were striking. When body temperature rose to fever levels, the human-origin virus struggled to replicate, and the infection weakened. Avian influenza behaved very differently. Raising the temperature did not stop the virus from multiplying, and a small increase of only 2°C was enough to turn a normally severe human-origin infection into a mild one.
The study also identified the PB1 gene as a major reason why bird flu can tolerate heat. PB1 helps the virus copy its genetic material inside infected cells. When viruses carried an avian-type PB1 gene, they were able to endure high temperatures and still cause severe disease in mice. This matters because avian and human flu viruses can exchange genes when they infect the same host, such as pigs.
Dr. Matt Turnbull, the study’s first author from the Medical Research Council Centre for Virus Research at the University of Glasgow, explained that this gene swapping remains a major concern for emerging influenza strains. He noted that similar exchanges occurred in 1957 and 1968, when human flu viruses replaced their PB1 gene with one from an avian strain. According to the researchers, this may help explain why those pandemics were so severe.
Credits: Gemini
In moments where life seems to slip away, many people describe seeing a bright tunnel with a strong light shining at the end. The image feels almost otherworldly. Whether it happens during major surgeries, car crashes, or sudden accidents, people from different places and backgrounds share accounts that sound strikingly alike. Films, novels, and personal stories often mention this same vision during a near-death experience. While some link it to a glimpse of the afterlife, there may be a scientific explanation for why the mind creates this scene.
Is it a sign of something beyond the physical world, a reaction of the mind in distress, or part of how the brain behaves as it shuts down? Here is what researchers have learnt.
Yes. Scientists agree that many people do report seeing a tunnel of light when death is close. Even though death is certain, much about it still feels unclear. For generations, people have tried to understand what takes place in those last moments. Only in recent years, as medical care has advanced, have researchers been able to look more closely at near-death experiences, also known as NDEs, which occur when someone comes dangerously close to dying.
One of the most repeated features of NDEs is the bright tunnel, a sight described by millions. It is not a quick trick of the mind. People often speak of it as deeply emotional and unforgettable. This leads to difficult questions. Does this vision suggest something beyond physical life, or is the brain responding to extreme stress in its final effort to survive?
When someone nears death, the body begins to change very quickly. Vital functions start to drop. The heart may slow, reducing the amount of oxygen that reaches the brain. Body temperature can fall, and breathing may become weak or uneven. Along with these physical changes, the brain also reacts in its own way.
Also Read: How Post Malone Lost 55lbs Just By Cutting Soda And Ditching Junk
A team at the University of Michigan studied what happens in the brain as a person dies. They examined four people who were removed from life support and found that two of them showed a strong surge of brain activity right before death.
The pattern of activity was similar to what occurs when a person is awake and using higher thought. These bursts were produced by gamma waves, which are linked to conscious processing. In one patient, the rise in gamma activity was nearly three hundred times higher than normal.
Jimo Borjigin of the University of Michigan suggested that this might show a form of hidden awareness that becomes active just before death.
Professor Borjigin explained that some people near death may recall seeing or hearing things or may feel as though they are watching their body from above, or even moving through space. She said her team may have identified the basic brain steps connected to this type of hidden consciousness.
She added that future research needs to involve people who survive such events, so their brain activity can be compared with their own descriptions of what they experienced.
Another study in the Journal of the Missouri State Medical Association also explores how consciousness may shape near-death experiences. The researchers note that there is still much to learn about how the brain creates awareness and how that awareness influences what people see or feel as they approach death.
Credits: iStock
2025 was the year of viral health claims. These claims had shock-value, but often were half-baked theories, which spread faster than facts. At Health and Me, we made it a mission to burst health myths, and help our readers make better and healthier life choices. Here is a recap of the myths we debunked this year.
The pink salt, lemon and water drink went viral on TikTok as a “metabolic reset.” Its simplicity made it tempting, but there is no scientific evidence that it burns fat or suppresses appetite.
Nutritionists warn that excess sodium can raise blood pressure and cause bloating. Pink salt also lacks iodine, making daily consumption risky for thyroid health. Investigations and dietitians have repeatedly confirmed that this drink does not boost metabolism or detox the body. The trend particularly targeted women seeking quick fixes, but experts remind that weight loss still relies on balanced eating and consistent movement.
A June 2 viral reel claimed that common painkillers raise heart risks by 20 percent, cause fertility problems, harm mental health, and act as “neurotoxins that kill the nervous system.” The influencer added that taking ibuprofen during periods “cuts off communication between the uterus and brain.”
Experts clarified that painkillers are not neurotoxins and do not interfere with the nervous system. They work by inhibiting enzymes responsible for producing pain-related chemicals. No part of this process kills nerves or blocks communication between organs and the brain.
On fertility, reproductive specialists at Instituto Bernabeu and findings from a 2016 prospective cohort study confirmed that standard painkillers like paracetamol, ibuprofen, aspirin, and acetaminophen do not reduce fertility or affect the ability to conceive. In fact, ibuprofen is often used to ease severe menstrual cramps caused by underlying conditions such as endometriosis, which itself may influence fertility.
We also tackled a long-standing myth many couples quietly worry about. A large number of men believe that producing semen automatically means they have healthy sperm.
Senior IVF specialist Dr Beena Muktesh reminded us that fertility is not about semen production but sperm quality. Sperm count, movement, and shape determine whether conception is possible. Even semen that appears normal in volume or texture can contain poor-quality sperm or show signs of infection or inflammation.
A simple semen analysis can reveal key issues. Low count, weak motility, abnormal shape, and pH imbalance can all affect fertility despite regular ejaculation. The takeaway is clear: semen production alone is never a measure of reproductive health.
Health Secretary Robert F Kennedy Jr. claimed that aluminum in vaccines triggers food allergies, echoing a belief that resurfaced across social media.
Aluminum is an adjuvant that strengthens immune response and has been safely used for decades. It is found in vaccines that protect against diphtheria, tetanus, HPV, hepatitis, pertussis, and more.
While a 2022 study explored a possible link between aluminum exposure and asthma, it also stressed the need for more research. A large study from Denmark in 2023 found no such link, and the American Academy of Pediatrics clearly stated that aluminum in vaccines does not cause food allergies. Genetics and delayed.
One popular reel claimed that the “actual treatment” for ADHD lies entirely in food and nutrition. While diet does influence brain health, experts highlight that ADHD cannot be cured solely through food.
Neurologists acknowledge the role of nutrition in managing symptoms, especially through gut health and nutrients such as fibers, inulin and antioxidants. Some studies show that zinc, iron or certain dietary changes may reduce symptom severity. However, all research agrees that diet cannot cure the condition. ADHD requires a combination of therapy, behavioral strategies and, when needed, medication.
© 2024 Bennett, Coleman & Company Limited