What Is Type 3 Diabetes? Insulin Resistance In The Brain That Could Trigger Alzheimer’s
Most people are aware of type 1 and type 2 diabetes, but did you know there is a type 3 diabetes as well! It is a more obscure term. Although it is not an accepted medical diagnosis, type 3 diabetes has been discussed in the literature as a possible relationship between insulin resistance in the brain and Alzheimer's disease. This link has been described to help explain how metabolic disorders impact brain health, causing cognitive decline and dementia.
Type 3 diabetes is more of a misnomer because it should not be confused with type 3c diabetes, which relates to pancreatic dysfunction. The term "type 3 diabetes," on the other hand, has been loosely used by some scientists to analogously propose that Alzheimer's disease is strongly implicated with insulin resistance in the brain.
This concept was conceptualized by Dr. Suzanne de la Monte and Dr. Jack Wands of Brown University in the year 2008. This hypothesis postulated that Alzheimer's disease may be called type 3 diabetes for it bears many similarities with glucose metabolism disorder type 2 diabetes. Their concept arises from the basic principle that insulin is fundamental to blood sugar regulation, but it is also the case with the brain. When brain cells become insulin-resistant, they lose access to glucose, impairing their function.
Research published in the Journal of Diabetes Science and Technology supports this hypothesis by indicating that insulin resistance can be a significant contributor to the occurrence of dementia, also referred to as Alzheimer's. The symptoms of memory loss and diminished reasoning are associated with impaired glucose metabolism in the body, especially in the cerebral tissue.
Although type 3 diabetes is not a "medical term," its symptoms correlate well with Alzheimer's diseases that are known to reduce the ability to think in an efficient manner and bring down brain health. These signs are:
- Loss of memory, especially short-term.
- Poor judgment and judgment ability
- Failure in recognizing people or places familiar once.
- Failure in the process of reading, writing or processing numbers
- Anxiety, agitation, or mood changes.
- Disorganized thoughts or confusion
- Lack of impulse control
As the disease advances, patients may be afflicted with severe complications including an inability to swallow or control their bodily functions. In the final stages, most patients die from fatal complications such as aspiration pneumonia.
This may not be well understood with regards to type 3 diabetes, or the exact link between insulin resistance and Alzheimer's disease. Some identified contributing factors include the following:
Insulin acts as an important regulatory mechanism of brain functions such as memory and cognition. The reduction in insulin signaling may impair metabolism of brain cells, thus bringing about neurodegeneration.
These diseases show a strong relationship and those individuals diagnosed with type 2 diabetes have double chances of getting Alzheimer's. In the two, the main causes can be chronic inflammation, oxidative stress, and a defect in glucose metabolism.
Insulin resistance associated with obesity, stress, and an unhealthy diet is considered a cause that may increase the chances of Alzheimer's disease.
Researches in Frontiers in Neuroscience and The Lancet Neurology have also highlighted that drugs used for antidiabetic medication may be crucial for the prevention or at least slowing down the course of Alzheimer's.
In 2022, in a study in Pharmaceuticals, researchers studied biomarker uptake in brain regions implicated in the faulty uptake and metabolism of blood sugar in Alzheimer’s patients.
Emerging Therapies
Research into such treatments as intranasal insulin has also been promising. Intranasal delivery of insulin directly to the brain has been reported to enhance glucose uptake by brain cells, improve memory, and boost cognitive performance. While such clinical trials have been shown to be successful, additional research is needed for safety and efficacy.
Medications
For patients being aggressive or agitated, antipsychotic drugs may be prescribed; however, therapies such as cognitive rehabilitation as well as cognitive stimulation therapy serve to preserve memory and executive function.
Lifestyle Interventions
Diet, exercise, and stress management are critical in preventing and managing insulin resistance. A review in the Journal of Alzheimer's Disease also highlighted the benefits of Kirtan Kriya meditation, which can regulate genes involved in insulin and glucose metabolism, improve sleep, and reduce inflammation.
Although type 3 diabetes is not officially recognized, its connection to Alzheimer’s disease underscores the importance of proactive measures for brain health. Some prevention strategies include:
1. Healthy Diet
Consuming a balanced diet rich in antioxidants, whole grains, and healthy fats may support brain health.
2. Regular Exercise
Physical activity improves insulin sensitivity, reduces inflammation, and enhances overall metabolic health.
3. Stress Reduction
Mindfulness practices, including meditation, have been shown to lower stress levels, which can reduce the risk of cognitive decline.
The term type 3 diabetes brings out the complex relationship between metabolic disorders and brain health. Even though it is not a recognized medical condition, the concept emphasizes the crucial role of insulin in brain function and its possible contribution to Alzheimer's disease. Continued research will hopefully provide hope for therapies such as intranasal insulin and lifestyle modifications.
Credit: Canva
While doctors across the world recommend ensuring that fluoride and other protective minerals make up your toothpaste, your body produces its very own amino acid that protect your entire dental cavity.
Arginine, an amino acid that is already present in saliva, can turn bacteria from damaging to protective in your mouth, a study has found.
When sugars from food are broken down by the many bacteria living in the mouth, acids are produced that gradually damage tooth enamel and lead to cavities. This is known as dental caries. Over time, this acid dissolves tooth enamel and causes cavities.
However, researchers at Aarhus University in Denmark have discovered that regular arginine treatment can significantly reduced the overall acidity levels in the mouth and prevent tooth decay.
Yumi Del Rey, microbiologist at Aarhus, said: ""Our results revealed differences in acidity of the biofilms, with the ones treated with arginine being significantly more protected against acidification caused by sugar metabolism."
Volunteers were then asked to instructed to dip the dentures in a sugar solution for 5 minutes, immediately followed by distilled water (as placebo) or arginine for 30 minutes, one on each side. This was to be repeated three times a day, with arginine treatment done on the same side each time.
Sebastian Schlafer, professor at the Department of Dentistry and Oral Health, explained: "The aim was to investigate the impact of arginine treatment on the acidity, type of bacteria, and the carbohydrate matrix of biofilms from patients with active caries."
After 4 days of this process, the biofilms were developed and the dentures were removed for detailed analysis. The researchers compared dental plaques grown on customized dentures on both sides of each participant's mouth using a special pH-sensitive dye called C-SNARF-4.
Additionally, the team also began to look into how arginine might be reducing acidity, by taking stock of which bacteria and sugars were present in each sample.
Biofilms treated with arginine showed lower levels of a sugar called fucose, while another sugar, galactose, was concentrated towards the outer surface of the biofilm, meaning both sugars were away from the tooth enamel.
After analyzing the DNA of bacteria present, the researchers found that arginine treatment significantly reduced a specific population of Streptococcus bacteria known to produce acid, while slightly increasing other bacterial strains that can metabolize arginine.
The scientists noted that while more research is needed into the arginine's effectiveness, the amino acid could be a promising new addition to oral hygiene products such as toothpaste or mouthwash.
Credits: Canva
For decades, a cancer diagnosis often came with fear and uncertainty. Today, that narrative is slowly changing. New national data shows that more people diagnosed with cancer in the United States are living longer than ever before, reflecting steady progress in prevention, early detection, and treatment.
For the first time, the five-year survival rate across all cancers has reached 70 percent. That means seven out of ten people diagnosed with cancer now live at least five years after diagnosis, a significant improvement from the mid-1970s, when survival hovered around 50 percent. This shift marks one of the most encouraging milestones in modern cancer care.
Several factors are driving this improvement. Reduced tobacco use has played a major role, particularly in lowering deaths from lung and other smoking-related cancers. At the same time, better screening tools are catching cancers earlier, when treatment is more likely to work. Advances in therapies, including targeted drugs, immunotherapy, and improved chemotherapy regimens, have also transformed outcomes for many patients.
What stands out is that survival gains are not limited to less aggressive cancers. Even cancers once considered highly fatal, such as lung cancer, liver cancer, and certain blood cancers, are seeing meaningful improvements. In some advanced-stage cancers where survival was previously measured in months, people are now living years longer than expected.
One of the most striking trends is improved survival among people with metastatic cancer, where the disease has spread to other parts of the body. While these cancers remain difficult to treat, progress is undeniable. Survival rates for metastatic lung cancer, for example, have increased severalfold since the 1990s. Similar gains have been seen in metastatic colorectal cancers.
These improvements suggest that cancer is increasingly being managed as a long-term condition rather than an immediate terminal illness for many patients. Continued research has played a critical role in making this possible.
The steady rise in survival has not happened by chance. It reflects decades of scientific investment, clinical trials, and innovation. However, experts warn that recent cuts to health research funding could slow future progress. Breakthroughs in cancer care rely heavily on sustained support for research, and disruptions to that pipeline could affect outcomes years down the line.
While the current numbers are encouraging, they also serve as a reminder that progress must be protected and expanded.
Despite overall gains, cancer outcomes are not improving equally for everyone. The report highlights ongoing racial and ethnic disparities in both cancer incidence and survival. Certain populations continue to experience higher death rates and lower survival, often due to limited access to early screening, timely diagnosis, and high-quality treatment.
Lung cancer is expected to remain the leading cause of cancer-related deaths in the coming years. While smoking remains the biggest risk factor, an increasing number of people who have never smoked are also being diagnosed, raising new questions about environmental and genetic risks. Some experts argue that screening guidelines need to evolve to reflect these changes.
As survival improves, the number of people living with a history of cancer is rapidly growing. There are already over 18 million cancer survivors in the US, and that number is expected to cross 22 million within the next decade. This brings new challenges.
Survivors often face long-term physical, emotional, and financial effects, and the healthcare system is still catching up when it comes to consistent survivorship care. Many primary care providers are not trained to monitor cancer recurrence or manage late treatment effects, leaving gaps in follow-up care.
Credits: Canva
Covid is returning, as the National Health Service, NHS UK warned that there has been a "bounce back" in respiratory viruses this winter, along with COVID too on the rise. While UK was already struggling with flu and norovirus on the rise, cases of COVID have also risen. The latest data from the UK Health and Security Agency (UKHSA) show that the number of patients in hospital beds with COVID per day has risen from 0.87 per 100,000, as compared with 0.77 per 100,000 the previous week.
NHS national medical director Professor Meghana Pandit said: “It’s clear that the worst is far from over for the NHS this winter, with hospitals again experiencing a rise in patients admitted with flu and other respiratory virus cases last week.”
Since the pandemic, there have been many variants of COVID. The virus has continued to evolve. Two new variants that caused the spike in cases in autumn were XFG, known as Stratus, and NB.1.1, known as Nimbus.
Stratus: It is a subvariant of Omicron variant and made of previous variants LF.7 and LP.8.1.2. It was first detected in a sample on January 27, 2025. Whereas, Nimbus was first detected on January 22, 2025. It also originated from the same omicron variant, which was the reason for spike in 2023.
The World Health Organization (WHO) describes stratus as a "variant under monitoring" after several countries in South East Asia reported a rise in new cases and hospitalizations with this variant being detected.
Among studies that focused on how symptoms appear together, fatigue stood out as the most consistently reported issue. It often occurred alone or alongside problems such as muscle and joint pain, brain fog, or breathlessness. Other symptom pairings that appeared frequently included loss of smell and taste, anxiety with depression, and various forms of musculoskeletal pain.
When researchers classified patients based on affected organ systems, respiratory problems were the most widespread, seen in about 47% of long COVID patients. Neurological symptoms followed at 31%, while gastrointestinal issues were reported by 28%. The authors stressed that these percentages reflect how often these clusters appeared within long COVID cases studied, not how common they are in the general population.
A smaller number of studies sorted patients by how severe their symptoms were, dividing them into mild, moderate, or severe categories using symptom scores, symptom counts, or quality-of-life measures. Three studies used clinical indicators for classification, including abnormal triglyceride levels and signs of restricted lung function on imaging.
As per the Centers for Disease Control and Prevention (CDC), here are the common COVID symptoms:
CDC says, look out for these signs:
© 2024 Bennett, Coleman & Company Limited