What Is Type 3 Diabetes? Insulin Resistance In The Brain That Could Trigger Alzheimer’s

Updated Dec 3, 2024 | 06:13 PM IST

SummaryDid you know type 3 diabetes, linked to insulin resistance in the brain, is associated with Alzheimer’s disease? It highlights how metabolic disorders can affect memory, cognition, and brain health.
What Is Type 3 Diabetes? Insulin Resistance In The Brain That Could Trigger Alzheimer’s

What Is Type 3 Diabetes? Insulin Resistance In The Brain That Could Trigger Alzheimer’s

Most people are aware of type 1 and type 2 diabetes, but did you know there is a type 3 diabetes as well! It is a more obscure term. Although it is not an accepted medical diagnosis, type 3 diabetes has been discussed in the literature as a possible relationship between insulin resistance in the brain and Alzheimer's disease. This link has been described to help explain how metabolic disorders impact brain health, causing cognitive decline and dementia.

What is Type 3 Diabetes?

Type 3 diabetes is more of a misnomer because it should not be confused with type 3c diabetes, which relates to pancreatic dysfunction. The term "type 3 diabetes," on the other hand, has been loosely used by some scientists to analogously propose that Alzheimer's disease is strongly implicated with insulin resistance in the brain.

This concept was conceptualized by Dr. Suzanne de la Monte and Dr. Jack Wands of Brown University in the year 2008. This hypothesis postulated that Alzheimer's disease may be called type 3 diabetes for it bears many similarities with glucose metabolism disorder type 2 diabetes. Their concept arises from the basic principle that insulin is fundamental to blood sugar regulation, but it is also the case with the brain. When brain cells become insulin-resistant, they lose access to glucose, impairing their function.

Research published in the Journal of Diabetes Science and Technology supports this hypothesis by indicating that insulin resistance can be a significant contributor to the occurrence of dementia, also referred to as Alzheimer's. The symptoms of memory loss and diminished reasoning are associated with impaired glucose metabolism in the body, especially in the cerebral tissue.

Symptoms of Type 3 Diabetes

Although type 3 diabetes is not a "medical term," its symptoms correlate well with Alzheimer's diseases that are known to reduce the ability to think in an efficient manner and bring down brain health. These signs are:

- Loss of memory, especially short-term.

- Poor judgment and judgment ability

- Failure in recognizing people or places familiar once.

- Failure in the process of reading, writing or processing numbers

- Anxiety, agitation, or mood changes.

- Disorganized thoughts or confusion

- Lack of impulse control

As the disease advances, patients may be afflicted with severe complications including an inability to swallow or control their bodily functions. In the final stages, most patients die from fatal complications such as aspiration pneumonia.

Causes of Type 3 Diabetes

This may not be well understood with regards to type 3 diabetes, or the exact link between insulin resistance and Alzheimer's disease. Some identified contributing factors include the following:

1. Insulin Resistance

Insulin acts as an important regulatory mechanism of brain functions such as memory and cognition. The reduction in insulin signaling may impair metabolism of brain cells, thus bringing about neurodegeneration.

2. Type 2 Diabetes

These diseases show a strong relationship and those individuals diagnosed with type 2 diabetes have double chances of getting Alzheimer's. In the two, the main causes can be chronic inflammation, oxidative stress, and a defect in glucose metabolism.

3. Environmental and Lifestyle Factors

Insulin resistance associated with obesity, stress, and an unhealthy diet is considered a cause that may increase the chances of Alzheimer's disease.

Researches in Frontiers in Neuroscience and The Lancet Neurology have also highlighted that drugs used for antidiabetic medication may be crucial for the prevention or at least slowing down the course of Alzheimer's.

Treatments for Type 3 Diabetes

In 2022, in a study in Pharmaceuticals, researchers studied biomarker uptake in brain regions implicated in the faulty uptake and metabolism of blood sugar in Alzheimer’s patients.

Emerging Therapies

Research into such treatments as intranasal insulin has also been promising. Intranasal delivery of insulin directly to the brain has been reported to enhance glucose uptake by brain cells, improve memory, and boost cognitive performance. While such clinical trials have been shown to be successful, additional research is needed for safety and efficacy.

Medications

For patients being aggressive or agitated, antipsychotic drugs may be prescribed; however, therapies such as cognitive rehabilitation as well as cognitive stimulation therapy serve to preserve memory and executive function.

Lifestyle Interventions

Diet, exercise, and stress management are critical in preventing and managing insulin resistance. A review in the Journal of Alzheimer's Disease also highlighted the benefits of Kirtan Kriya meditation, which can regulate genes involved in insulin and glucose metabolism, improve sleep, and reduce inflammation.

Can Type 3 Diabetes Be Prevented?

Although type 3 diabetes is not officially recognized, its connection to Alzheimer’s disease underscores the importance of proactive measures for brain health. Some prevention strategies include:

1. Healthy Diet

Consuming a balanced diet rich in antioxidants, whole grains, and healthy fats may support brain health.

2. Regular Exercise

Physical activity improves insulin sensitivity, reduces inflammation, and enhances overall metabolic health.

3. Stress Reduction

Mindfulness practices, including meditation, have been shown to lower stress levels, which can reduce the risk of cognitive decline.

The term type 3 diabetes brings out the complex relationship between metabolic disorders and brain health. Even though it is not a recognized medical condition, the concept emphasizes the crucial role of insulin in brain function and its possible contribution to Alzheimer's disease. Continued research will hopefully provide hope for therapies such as intranasal insulin and lifestyle modifications.

End of Article

Smoking Cannabis Can Lead To Mental Illnesses In Teenagers, Study Finds

Updated Feb 21, 2026 | 06:11 PM IST

SummaryResearchers who studied 463,396 adolescents ages 13 to 17 through age 26 found that adolescents who use cannabis could face a significantly higher risk of developing psychotic (doubled), bipolar (doubled), depressive and anxiety disorders, a study shows
Smoking Cannabis Can Lead To Mental Illnesses In Teenagers, Study Finds

Credit: Canva

Adolescents who use cannabis could face a significantly higher risk of developing psychotic (doubled), bipolar (doubled), depressive and anxiety disorders, a study shows.

Researchers from Kaiser Permanente, the Public Health Institute's Getting it Right from the Start, the University of California, San Francisco and the University of Southern California, who studied 463,396 adolescents ages 13 to 17 through age 26, found that children between these ages were extremely prone to developing mental illnesses.

Lynn Silver, MD, program director of the Getting it Right from the Start, a program of the Public Health Institute, and study co-author noted: "As cannabis becomes more potent and aggressively marketed, this study indicates that adolescent cannabis use is associated with double the risk of incident psychotic and bipolar disorders, two of the most serious mental health conditions.

"The evidence increasingly points to the need for an urgent public health response - one that reduces product potency, prioritizes prevention, limits youth exposure and marketing and treats adolescent cannabis use as a serious health issue, not a benign behavior."

"Even after accounting for prior mental health conditions and other substance use, adolescents who reported cannabis use had a substantially higher risk of developing psychiatric disorders - particularly psychotic and bipolar disorders.

"This study adds to the growing body of evidence that cannabis use during adolescence could have potentially detrimental, long-term health effects. It's imperative that parents and their children have accurate, trusted, and evidence-based information about the risks of adolescent cannabis use," Kelly Young-Wolff, Ph.D., lead author of the study and senior research scientist at the Kaiser Permanente Division of Research, added.

The observational US-focused study also found that cannabis use was more common among adolescents enrolled in Medicaid and those living in more socioeconomically deprived neighborhoods.

How Does Cannabis Usage In Teens Affect Overall Health?

Frequent, heavy cannabis use during adolescence can lead to long-lasting changes in brain function, impairing memory, learning, and attention. It can also cause reduced IQ and difficulty with problem-solving.

Strong links have also been found between adolescent cannabis use and mental health issues, including increased risk of depression, anxiety, and, in some cases, schizophrenia or other psychotic disorders.

Additionally, smoking cannabis can lead to breathing problems similar to tobacco, such as chronic bronchitis. It can also cause an increased heart rate, and some studies suggest a higher risk of heart attacks.

Early initiation, especially before age 16, increases the risk of developing Cannabis Use Disorder (addiction). High-potency products can lead to rapid onset of withdrawal symptoms, mood changes, and even physical complications like Cannabis Hyperemesis Syndrome (severe nausea/vomiting)

Why Should Early Cannabis Usage Be Discouraged?

The Center of Disease Control and Prevention (CDC) explained that the brain of a teenager is still growing and developing a lot, and this process continues until they are about 25 years old. Using cannabis (marijuana) during the teen years and young adulthood can potentially harm this development.

Compared to teens who don't use cannabis, those who do are more likely to drop out of high school or not finish a college degree. Using cannabis can cause several immediate and long-term problems for teens:

  • Difficulty Thinking
  • Memory Issues
  • Poor Coordination
  • Attention Problems
  • School and Social Troubles
  • Cannabis use can also lead to more serious issues that affect a teen's overall life.
  • Increased Mental Health Risks
Cannabis is linked to depression and anxiety, and it raises the risk of temporary psychosis (paranoia or hallucinations). Starting young and using often increases the likelihood of long-term illnesses like schizophrenia.

Driving under the influence of cannabis is illegal and unsafe, as it severely slows reaction time. Cannabis reduces coordination and concentration, impacting all the skills necessary for responsible and safe driving.

Around 30 percent of cannabis users are also known to develop an addiction (cannabis use disorder). Failing to quit or choosing the drug over family activities are signs. This risk is higher for frequent teen users.

End of Article

Scientists Develop 3D Heart Model Which Can Beat Cardiovascular Diseases

Updated Feb 21, 2026 | 02:59 PM IST

SummaryScientists have created a three-dimensional "heart-on-a-chip" (HOC) model that beats on its own, uses calcium to initiate muscular activity and responds predictably to common drugs in hopes that it will help fight against cardiovascular diseases and heart failure
Scientists Develop 3D Heart Model Which Can Beat Cardiovascular Diseases

Credit: Unsplash

Scientists have created a three-dimensional "heart-on-a-chip" (HOC) model that beats on its own, uses calcium to initiate muscular activity and responds predictably to common drugs in hopes that it will help fight against cardiovascular diseases and heart failure.

This engineered heart is the first to incorporate a dual-sensing platform that provides real-time tracking of activity throughout the heart tissue down to the cellular level, helping scientists measure cellular function, which is critical for preventing heart failure in patients with CVDs.

First author Ali Mousavi, a biomedical engineer at the University of Montreal: "The ability to observe the tissue's response to different compounds in real time represents a major advantage for preclinical development and translational research."

To create their heart-on-chip (HOC) models, researchers collected heart muscle and connective tissue cells from rats. They placed the cells in a gel rich in proteins and nutrients to help them grow, then put them onto tiny, flexible silicon chips.

To measure how the tissue worked, they used two types of sensors. First, they attached the engineered heart tissue between two small elastic pillars. Each time the tissue beat, the pillars bent slightly, and this bending showed how strong the heartbeat was.

Then they placed tiny, soft gel-based sensors inside the tissue. These very small droplets—about 50 micrometers wide—changed shape as the cells contracted. This allowed the researchers to measure mechanical stress at the level of individual cells.

Talking about this development, senior author Houman Savoji, a mechanical and biomedical engineer at the University of Montreal said: "This breakthrough brings us even closer to true precision health by giving us the ability to identify the most effective medication for each person before treatment is even administered."

The Rising Heart Attack Crisis

Heart attacks occur when blood flow to the heart is severely reduced or blocked due to a buildup of plaque which is made of fat, cholesterol and other substances in the heart's arteries.

During a heart attack, a lack of blood flow causes the cells and tissue in the heart muscle to die, leading to irreversible damage that can result in serious complications like arrhythmias, heart failure, cardiogenic shock, or cardiac arrest.

It is one of the leading causes of death in the country. Four Indians experience a heart attack every minute, with one in four dying of the cause. Experts have also noticed a rising trend of nearly 50 percent of heart attack patients being under the age of 40, with half of all heart attacks in Indian men occurring under 50.

Coronary Artery Disease: The Silent KillerCoronary artery disease (CAD) is one of the most common illnesses that can cause a heart attack in people. It develops over years and has no clear signs and symptoms apart from a heart attack.

The illness begins due to a buildup of fats, cholesterol and other substances known as plaque in and on the artery walls.

Over time, this can cause narrowing or blockage of the coronary arteries and block the supply of oxygen-rich blood to the heart which can lead to chest pain (angina), shortness of breath and ultimately, heart attacks.

READ MORE: How This Chinese Medicine Can Improve Blood Flow In Angina Patients

Typically, those above the age of 45, having a biological family member with heart disease, lack of sleep, smoking, consuming saturated fats along with other autoimmune diseases such as lupus and rheumatoid arthritis, can increase the risk of developing CAD.

Nearly one in 10 Indian adults suffer from CAD and about two million people die from the disease annually. Apart from this, about 18 to 20 million American adults aged 20 and older are also affected about the disease.

How Much You Should Exercise To Prevent CAD?

The American Health Association recommends performing at least 150 minutes per week of moderate-intensity aerobic activity, such as brisk walking, dancing and gardening or 75 minutes per week of vigorous aerobic activity, such as hiking, running, cycling or and playing tennis or a combination of both, preferably spread throughout the week to maintain heart health.

Moreover, regular exercise can also reduce the risk of Type 2 diabetes, high blood pressure, dementia and Alzheimer’s as well as several types of cancer. It can also help improve sleep, cognition, including memory, attention and processing speed.

Dr Hayes recommends opting for a cardiac evaluation such as an electrocardiogram, or EKG; a stress test; a cardiac MRI or CT scan to generate images of your heart if you notice changes in your ability to exercise or cannot perform consistent levels of exercise.

End of Article

Air Pollution Is Leading You To Early Dementia, Scientists Say

Updated Feb 21, 2026 | 01:57 PM IST

SummaryResearchers from Emory University, US have found that constant exposure to PM2.5 can significantly increase your risk of developing Alzheimer's disease-caused dementia.The scientists also discovered that those who had suffered a stroke were at a slightly higher risk of developing Alzheimer's disease
Air Pollution Is Leading You To Early Dementia, Scientists Say

Long-term exposure to tiny air pollution particles can significantly increase your risk of developing Alzheimer's disease-caused dementia.

Researchers from Emory University, US have found that constant exposure to PM2.5 can affect the brain more directly than scientists have assumed.

They noted: "Alzheimer's disease is the most common form of dementia and a growing public health challenge, especially in aging populations. Our findings suggest that PM2.5 exposure was associated with increased Alzheimer's disease risk, primarily through direct rather than comorbidity-mediated pathways."

The scientists also discovered that those who had suffered a stroke were at a slightly higher risk of developing Alzheimer's disease, suggesting that strokes may make the brain more vulnerable to air pollution.

"The observed effect modification by stroke may reflect an underlying biological vulnerability in cerebrovascular pathways. Stroke-related neurovascular damage can compromise the blood–brain barrier, facilitating the translocation of PM2.5 particles or their associated inflammatory mediators into the brain."

The observational study was released in PLOS Magazine.

When Does The Risk Increase?

A new IIT Delhi study suggests the air quality may be worse than what conventional surface monitoring stations capture.

During a post-winter-haze day in March 2021, the researchers measured the vertical distribution of fine particulate matter at 20-metre intervals from the surface up to 100 meters through drones.

At 100 meters, PM2.5 concentrations were around 160 micrograms per cubic meter which is about 60 percent higher than surface readings on the same days. They also found that humidity levels were also higher by 70 percent, which promoted the concentration of ammonium nitrate and chloride.

Additionally, the study found that PM2.5 levels increased sharply near the top of this shallow layer, leading to higher concentrations at around 100 metres.

Based on these observations, the researchers concluded that residents in 28–30-storey buildings may face higher exposure to pollutants and inorganic material than indicated by ground-based monitors.

They also noted that drone-mounted low-cost sensors are a much more effective tool for studying the lower atmospheric boundary layer to improve air quality monitoring, model evaluation and mitigation strategies in cities such as Delhi.

What Is Alzheimer’s Disease?Alzheimer's disease is one of the most common forms of dementia and mostly affects adults over the age of 65.

About 8.8 million Indians aged 60 and above are estimated to be living with Alzheimer's disease. Over seven million people in the US 65 and older live with the condition and over 100,00 die from it annually.

Alzheimer's disease is believed to be caused by the development of toxic amyloid and beta proteins in the brain, which can accumulate in the brain and damage cells responsible for memory.

Amyloid protein molecules stick together in brain cells, forming clumps called plaques. At the same time, tau proteins twist together in fiber-like strands called tangles. The plaques and tangles block the brain's neurons from sending electrical and chemical signals back and forth.

Over time, this disruption causes permanent damage in the brain that leads to Alzheimer's disease and dementia, causing patients to lose their ability to speak, care for themselves or even respond to the world around them.

While there is no clear cause of Alzheimer's disease, experts believe it can develop due to genetic mutations and lifestyle choices, such as physical inactivity, unhealthy diet and social isolation.

Early symptoms of Alzheimer's disease include forgetting recent events or conversations. Over time, Alzheimer's disease leads to serious memory loss and affects a person's ability to do everyday tasks.

There is no cure for this progressive brain disorder and in advanced stages, loss of brain function can cause dehydration, poor nutrition or infection. These complications can result in death.

End of Article