Image Credit: Canva
You’ve waved goodbye to cookies, chips, and everything else that comes in a shiny wrapper, but the scale refuses to budge. It can be disheartening when cutting out processed foods doesn’t translate into immediate weight loss.
While eliminating junk food is an essential first step, weight loss often requires more nuanced adjustments. Studies, including a 2019 publication in Cell Metabolism, reveal that processed foods can lead to increased calorie consumption — about 500 extra calories daily compared to whole, unprocessed diets. While cutting out junk food is a commendable step, achieving sustainable weight loss requires a holistic approach.
But sometimes, ditching junk food isn’t enough. Here are five key reasons why your weight loss journey may be stalling, and how you can get back on track.
The connection between sleep and weight is often overlooked but crucial. Both too much sleep (over 9 hours) and too little (under 5 hours) can disrupt your body’s production of appetite-regulating hormones, such as leptin and ghrelin. This hormonal imbalance can increase cravings and overeating, particularly for high-calorie foods.
Additionally, poor sleep can leave you feeling fatigued, making it harder to stick to exercise routines.
How to Fix It: Aim for 7–8 hours of quality sleep per night. Establish a consistent bedtime routine and minimize screen time before bed to improve sleep hygiene.
You may have switched to a "healthier" drink lineup, but beverages like fruit juices, sugary coffee drinks, and wine can contain hidden calories that derail progress. Even organic fruit juices, often marketed as healthful, are loaded with sugar and lack the fiber found in whole fruits.
How to Fix It: Stick to water, unsweetened tea, black coffee, or sparkling water. To manage hunger, drink two cups of water 30 minutes before meals—a strategy backed by research in the Journal of Natural Science, Biology and Medicine. Treat calorie-laden drinks as occasional indulgences rather than daily staples.
When and how often you eat can significantly influence weight loss. Skipping meals can lead to overeating later, while constant grazing throughout the day can result in unnoticed calorie overload.
Studies show that front-loading your calories, with a substantial breakfast and lighter evening meals, promotes greater weight loss. Research published in the journal Obesity found that individuals consuming larger breakfasts lost twice the weight compared to those who favored bigger dinners.
How to Fix It: Stick to eating every 3.5 to 4 hours during a 10–12-hour daytime window. This approach stabilizes blood sugar and encourages fat reserves to be used for energy between meals.
Exercise is a cornerstone of weight loss, but it’s easy to overestimate the calories burned and indulge in post-workout treats. That post-spin class protein shake or granola bar may negate your calorie deficit if not balanced within your daily intake.
How to Fix It: Plan snacks strategically. If your workout falls within two hours of a meal, skip the extra snack and refuel during your regular meal. If you need a snack, opt for small, protein-rich options like Greek yogurt or a handful of nuts.
Water plays an underrated role in weight loss. Staying hydrated helps control hunger and reduces the temptation to reach for sugary drinks. Dehydration, on the other hand, can be mistaken for hunger, leading to unnecessary snacking.
How to Fix It: Drink 2–6 cups of water daily to satisfy thirst without adding calories. Carry a reusable water bottle as a visual reminder to stay hydrated throughout the day.
Sitting for long hours, whether at a desk or on the couch, can slow your metabolism and disconnect your body’s natural hunger cues. Incorporating even short bursts of activity, like three 10-minute walks daily, can reignite your metabolism.
Stress often leads to comfort eating, favoring calorie-dense, nutrient-poor foods. Mindfulness practices, such as meditation or journaling, can help address the emotional triggers behind overeating.
Medical conditions, genetics, or hormonal imbalances can also impede weight loss. If your efforts yield no results, consult a healthcare professional for tests or guidance tailored to your needs.
Weight loss isn’t linear, and small, consistent adjustments are more effective than drastic overhauls. By identifying and tackling these hidden barriers, you can set yourself up for lasting success on your health journey.
Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain. Cell Metabolism. 2019
Effect of excessive water intake on body weight, body mass index, body fat, and appetite of overweight female participants. J Nat Sci Biol Med. 2014
Credits: Canva and Piktochart
In June 2022, the U.S. Supreme Court issued a landmark decision in Dobbs v. Jackson Women’s Health Organization, overturning the 1973 Roe v. Wade ruling that had established a constitutional right to abortion. With the Dobbs ruling, the authority to regulate abortion returned to individual states—setting off a wave of legislative action that continues to reshape access to abortion care across the country.
Three years later, the national abortion landscape is more fragmented than ever. Some states have implemented near-total bans, while others have enshrined protections into their constitutions. As legal battles unfold and ballot measures continue to appear, access to abortion has become heavily dependent on geography.
As of mid-2025, abortion is nearly banned in 13 states, with limited exceptions such as life endangerment or cases of rape or incest.
In over 25 other states, gestational limits range from six to 26 weeks. These restrictions are particularly concentrated in the South and Midwest, where legislative action following the Dobbs decision was swift.
Conversely, several states have moved to protect or expand abortion rights.
Since 2022, voters in California, Michigan, Ohio, and Vermont have passed constitutional amendments guaranteeing the right to abortion.
In states like Kansas, Kentucky, and Montana, voters rejected ballot measures that would have added new abortion restrictions.
In Missouri—a state that implemented one of the country’s strictest abortion bans immediately after the Dobbs ruling—voters passed a measure in 2024 to enshrine abortion access in the state constitution.
However, that decision was followed by further legal disputes. The Missouri Supreme Court later blocked abortion access again, and lawmakers have approved another referendum for 2026 that could reverse the constitutional amendment.
As access has narrowed in certain states, more people are traveling long distances to obtain abortion care. According to data from The Brigid Alliance, an organization that provides travel and logistical support to abortion-seekers, average travel distances have increased nearly 50% since the Dobbs ruling. Today, many patients are traveling more than 1,400 miles round trip to reach a provider.
The group also reports that average travel-related expenses have risen to more than $2,300 per patient—reflecting the rising cost of transportation, lodging, and time away from work. The majority of their clients seeking assistance now come from states like Texas, Florida, Georgia, and North Carolina, where laws have become increasingly restrictive.
Southern states, in particular, have emerged as areas where abortion access is most limited. For example, Florida implemented a six-week abortion ban after a proposed constitutional amendment to protect abortion access narrowly failed, receiving just under the 60% threshold required for passage. This has redirected patients to other states with more permissive laws, such as Virginia.
Since the Dobbs ruling, many abortion-related measures have appeared on state ballots—either to protect or restrict access. In 2024 alone, voters in Arizona, Colorado, Maryland, Missouri, Montana, Nevada, and New York took up initiatives involving abortion rights. Most successful measures focused on preserving access until fetal viability, generally considered to occur around 24 weeks of pregnancy.
Not all efforts to expand abortion rights have succeeded. In Nebraska, voters faced competing ballot measures—one aiming to restrict abortion after the first trimester (which passed) and another to guarantee abortion access up to fetal viability (which failed). South Dakota also rejected a measure to protect abortion rights.
Three years after Dobbs, the U.S. remains sharply divided on abortion access, with legal and political fights continuing to play out across state lines. As more ballot measures are introduced and court rulings evolve, the future of abortion rights in America remains uncertain—shaped less by federal law than by the individual choices of state governments and their voters.
Credits: Canva
A new study published in the Journal of the American Chemical Society offers critical insight into the biological mechanisms underlying type 2 diabetes. Researchers from the Indian Institute of Technology Bombay (IIT Bombay), in collaboration with IIT Kanpur and the Chittaranjan National Cancer Institute (CNCI), Kolkata, have identified a key trigger that accelerates the progression of this widespread disease: the structural protein collagen I.
Type 2 diabetes currently affects over 500 million people worldwide, and numbers are expected to rise sharply in the coming decades. The disease is primarily driven by a combination of genetics, lifestyle factors, and complex cellular mechanisms. At its core lies the dysfunction of pancreatic β-cells, the insulin-producing cells responsible for regulating blood sugar levels.
As diabetes develops, β-cells either fail to produce enough insulin or the body’s cells become resistant to it. A lesser-known yet crucial hormone, amylin, is also secreted by these β-cells and plays a vital role in managing blood sugar after meals. However, in diabetic conditions, excessive amylin production leads to misfolding and toxic clumping, which damages β-cells and accelerates disease progression.
In the latest study, the research team pinpointed fibrillar collagen I, a common component of the extracellular matrix, as a key factor driving the toxic aggregation of amylin. Found abundantly in connective tissues like skin and bones, collagen I is also present in the pancreatic environment—particularly in diabetic tissues where it is elevated.
“Every tissue is composed of cells and an extracellular matrix that provides structural support. In diabetic pancreatic tissue, this matrix, especially collagen I, becomes more prominent,” explained Prof. Shamik Sen, the study’s lead investigator from the Department of Biosciences and Bioengineering at IIT Bombay.
The researchers discovered that collagen I acts like a scaffold or platform, accelerating the misfolding and aggregation of amylin, which in turn damages β-cells. This discovery adds a new layer to understanding why the disease worsens over time, even with treatments targeting cellular pathways.
To investigate how collagen I interacts with amylin, the team used a suite of advanced biophysical tools. These included surface plasmon resonance to measure binding strength, atomic force microscopy to study molecular adhesion, thioflavin T fluorescence to track aggregation speed, and NMR spectroscopy to identify interacting regions of the molecules.
“Amylin almost coats the collagen fibres, forming stable, toxic aggregates that cells struggle to clear,” said Prof. Sen. The behavior of amylin on collagen fibres resembled trains moving on tracks—quickly and with destructive momentum.
Computer simulations by Prof. Prasenjit Bhaumik’s group at IIT Bombay confirmed that fibrillar collagen I accelerates the toxic aggregation process, offering further validation of the molecular interaction.
The team extended their study to biological samples from diabetic mice and humans. With the help of Prof. Hamim Zafar and Prof. Sai Prasad Pydi from IIT Kanpur, and Dr. Sankhadeep Dutta from CNCI, they analyzed single-cell data and tissue architecture.
The findings were striking: as diabetes progressed, both collagen and amylin levels rose, accompanied by damage to pancreatic islets—clusters of cells that house insulin-producing β-cells.
To test the functional impact, the researchers grew lab-engineered β-cells on collagen gels containing amylin. These cells showed increased oxidative stress, reduced insulin production, and higher rates of cell death, compared to controls grown without collagen or amylin.
This suggests that the extracellular environment, particularly collagen I, plays a central role in worsening β-cell dysfunction in diabetes.
The findings could explain why many diabetes treatments fall short—they overlook the external microenvironment contributing to disease progression. “Unless we disrupt the interaction between amylin and collagen, we may not be able to eliminate the toxic pancreatic environment,” said Prof. Sen.
Looking ahead, the team is working on cryo-electron microscopy (cryo-EM) models to visualize how amylin and collagen interact at the molecular level. They are also exploring 3D tissue engineering strategies to restore pancreatic function by replicating healthy extracellular conditions.
Credits Canva
As wildfires become an all-too-familiar headline across the globe, their visible devastation—scorched forests, lost homes, and displaced communities—often overshadows a more insidious threat: the impact of wildfire smoke on human health. While the immediate dangers of flames and evacuations are clear, a new study published in Nature Medicine reveals that wildfire smoke does far more than irritate eyes and throats. It can fundamentally alter the immune system, potentially making people more susceptible to illness long after the smoke has cleared.
The study, led by researchers from the Harvard T.H. Chan School of Public Health, found that people exposed to wildfire smoke exhibit changes in gene expression and immune function, even if they’re otherwise healthy. This suggests that the health consequences of wildfires may extend far beyond the immediate coughing, wheezing, and watery eyes that so many experience during fire season.
The research, led by Dr. Kari Nadeau of the Harvard T.H. Chan School of Public Health, provides the most detailed look yet at how wildfire smoke affects the body on a cellular level. By analyzing blood samples from 31 firefighters and civilians exposed to wildfire smoke and comparing them to 29 unexposed individuals, the study uncovered a complex web of immune changes.
People exposed to wildfire smoke showed a marked increase in memory immune cells—cells that typically provide long-term immunity. At first glance, this might seem beneficial, but the study also found elevated biomarkers of inflammation and immune activity, as well as changes in dozens of genes linked to allergies and asthma. In short, the immune system was not just activated—it was thrown into overdrive, potentially increasing vulnerability to illness.
Dr. Mary Johnson, the study’s lead researcher, explains, “Our findings demonstrate that the immune system is extremely sensitive to environmental exposures like fire smoke, even in healthy individuals. Knowing exactly how may help us detect immune dysfunction from smoke exposure earlier and could pave the way for new therapeutics to mitigate, or prevent altogether, the health effects of smoke exposure and environmental contaminants.”
Wildfire smoke is a toxic brew. It contains:
The ultra-fine PM2.5 particles are particularly dangerous. At less than 2.5 micrometers in diameter, they are 28 times smaller than the width of a human hair and can be inhaled deep into the lungs, enter the bloodstream, and affect organs throughout the body.
“These findings suggest that even short-term exposure to wildfire smoke can act as a biological stressor with long-lasting effects,” said Dr. Mary Johnson, lead researcher and environmental health scientist at Harvard. “That’s especially concerning as wildfire seasons grow longer and smoke plumes travel farther.”
One of the most striking findings of the study was the alteration of 133 genes related to allergies and asthma in those exposed to wildfire smoke. This genetic shift may help explain why people living in wildfire-prone areas often report more respiratory problems, even months after the fires have ended.
The study also found that smoke-exposed individuals had more immune cells affected by toxic metals, further increasing inflammation and the risk of immune dysfunction. These changes may make people more susceptible to infections, worsen existing respiratory conditions, and potentially contribute to the development of new allergies or asthma.
The United States, particularly western states like California, has witnessed a dramatic increase in wildfire frequency and severity. In 2023 alone, California experienced over 7,000 wildfires, with the California Department of Forestry and Fire Protection responding to nearly 590,000 related emergencies. The devastating January 2025 fire in Los Angeles County, which claimed 30 lives and scorched 40,000 acres, underscored the deadly toll of these disasters.
Climate change is a major driver, creating hotter, drier conditions that fuel longer and more intense fire seasons. As wildfires become more common, understanding and mitigating the health risks of smoke exposure is more urgent than ever.
Wildfire smoke can trigger a range of symptoms, from burning eyes and runny noses to persistent coughs and breathing difficulties. For people with pre-existing conditions like asthma, COPD, or eczema, exposure can lead to dangerous flare-ups.
But the risks extend beyond the lungs. Fine particulate matter (PM2.5) can enter the bloodstream, causing inflammation throughout the body. Studies have linked wildfire smoke to increased emergency room visits for heart attacks and coronary heart disease within 24 hours of exposure. There is also emerging evidence that PM2.5 can impair cognitive functions such as memory and attention, likely by inducing inflammation in the brain.
Experts emphasize the need for proactive measures as wildfire season peaks:
If evacuation orders are issued, follow them promptly—not just for safety from flames, but from the health threats the smoke carries.
As wildfires continue to reshape landscapes and communities, their invisible legacy—on our immune systems and overall health—demands urgent attention. The message from scientists is clear: wildfire smoke is not just an environmental nuisance, but a profound health hazard that can affect anyone, anywhere the wind blows. Proactive measures, informed guidelines, and continued research are essential to protect public health in an increasingly fiery world.
© 2024 Bennett, Coleman & Company Limited