Migraines In Women: How Hormones Influence Neurological Health
For those who have not experienced a migraine, perhaps it would seem just another headache. But for someone like me who has suffered through migraines that will last over a week even with medication, I can definitely tell you that it's much more. The ache is not confined to the head; it's the whole experience. Nausea, sensitivity to light, and throbs so bad it makes simple tasks unbearable. It also comes with an emotional burden—the loneliness and frustration are pretty unbearable. Through the years, realizing how hormones are also implicated in triggering and exacerbating my migraines has helped change the game in my dealing with these episodes.
Hormonal migraines are caused by fluctuations in estrogen and progesterone, the two main female hormones. These hormones are essential for the reproductive system, regulating menstrual cycles and pregnancy. They also have an effect on brain chemicals, such as serotonin and dopamine, which affect mood and pain perception. When hormone levels fluctuate, such as during menstruation, pregnancy, or menopause, they can destabilize the pathways in the brain, causing migraines.
According to Dr. Shivananda Pai, Consultant Neurology, migraines are more than a neurological disorder. "Migraines represent a complex interplay of genetic, environmental, and hormonal factors. In women, hormonal fluctuations are a critical trigger that amplifies sensitivity to pain," he explains. Hormonal headaches are particularly challenging because they are influenced by multiple life stages, from puberty to post-menopause. Common causes include:
Estrogen, often called the "hormone of femininity", does more than regulate reproductive functions. It is a powerful influencer of brain health. Estrogen modulates the activity of neurotransmitters like serotonin, which regulates mood and pain perception, and dopamine, associated with reward and pleasure.
During stages of hormonal stability, like in pregnancy's latter months, women may have fewer migraines because of the steady elevation of estrogen. However, a sudden downfall in estrogen destabilizes these chemicals in the brain, sending a heightened sensitivity for migraine triggers.
The most common form of hormonal migraines is menstrual migraines, which occur in response to the steep decline in estrogen levels just before menstruation. These are typically more intense and less responsive to standard treatment. The timing of these migraines provides clear evidence of the role hormones play in neurological health.
Pregnancy is a rollercoaster of hormones. Although many women experience relief from migraines as a result of the constantly elevated levels of estrogen, some women, particularly in the first trimester, worsen. This individual variability is a characteristic of hormonal migraine triggers.
Hormonal treatments, such as oral contraceptives and HRT, have had mixed reviews regarding their use in managing migraine. Some women fare better with the stabilization the treatment provides, whereas others suffer worsening symptoms. This will depend on the nature and dose of the hormones used.
For most women, menopause brings relief from their migraines. The decline in frequency and severity often accompanies stability in hormone levels. Even so, the susceptibility remains with some towards other forms of triggers including stress and sleep deprivation, not to forget diet-related factors and continues the saga of migraines well after the menopausal stages.
The relationship of hormones to neurological health goes beyond migraines. Hormonal changes have profound effects on a woman's brain in general.
Mood Disorders: Estrogen helps stabilize mood by regulating serotonin. Its decline at menopause increases the risk of mood swings and depression.
Neurodegenerative Diseases: Estrogen is neuroprotective, stimulating the growth and repair of brain cells. Its absence in post-menopausal women has been associated with an increased risk of Alzheimer's disease and cognitive decline.
Multiple Sclerosis (MS): Hormonal cycles may affect the course of MS, a disease that occurs more frequently in women than in men. Estrogen's anti-inflammatory effects provide transient protection during pregnancy, reducing relapse rates in women with MS.
"The intricate interplay between hormones and neurological health underscores the need for gender-specific treatment approaches," says Dr. Pai.
While hormonal changes are inevitable, several strategies can help manage migraines effectively:
Understanding your menstrual cycle can help identify patterns and predict when migraines might occur. This knowledge allows for preventive measures, such as scheduling medications or adjusting lifestyle habits.
Working with a neurologist or gynecologist can help develop a personalized treatment plan. Options might include hormonal therapies, triptans, or preventive medications tailored to your specific needs.
A well-balanced diet, regular exercise, and stress management are all integral parts of managing migraines. For instance, magnesium-rich foods and hydration can help reduce the frequency and severity of attacks.
For people with severe or frequent migraines, preventive medications, such as beta-blockers or CGRP inhibitors, may be prescribed. These medications stabilize brain activity and therefore reduce the chances of migraine during hormonal fluctuations.
Techniques like yoga, meditation, and biofeedback can enhance wellness and reduce the debilitating effects of stress-one of the most common migraine triggers.
Research that was once in its embryonic stage continues to shed more light on the role of hormones in migraines and other neurological conditions. Further breakthroughs in genetic testing might enable doctors to predict, at least in a way, how an individual would react to hormonal therapies. The importance of gender-specific approaches is gradually being realized, which involves differentiating between the plight of women with migraines from others.
As Dr. Pai puts it, "Empowering women with knowledge about the hormonal underpinnings of migraines can lead to better, more personalized care. With the right strategies, migraines can be effectively managed, allowing women to lead fuller, healthier lives.
Migraines are not headaches; they are a complex neurological condition that deeply impacts the lives of millions of women. Understanding the role of hormones in triggering and exacerbating migraines is a vital step toward better management and relief.
Awareness, proactive care, and advances in medical research can help women regain their lives from the grip of hormonal migraines. Whether tracking cycles, adopting healthier habits, or seeking tailored medical care, every step taken toward understanding and managing migraines is a step toward empowerment.
Dr Shivananda Pai is a Consultant Neurology at KMC Hospital Dr B R Ambedkar Circle in Mangalore, India.
Brandes JL. The Influence of Estrogen on Migraine: A Systematic Review. JAMA. 2006;295(15):1824–1830. doi:10.1001/jama.295.15.1824
Sacco S, Ricci S, Degan D, Carolei A. Migraine in women: the role of hormones and their impact on vascular diseases. J Headache Pain. 2012 Apr;13(3):177-89. doi: 10.1007/s10194-012-0424-y. Epub 2012 Feb 26. PMID: 22367631; PMCID: PMC3311830.
Credit: Canva
While doctors across the world recommend ensuring that fluoride and other protective minerals make up your toothpaste, your body produces its very own amino acid that protect your entire dental cavity.
Arginine, an amino acid that is already present in saliva, can turn bacteria from damaging to protective in your mouth, a study has found.
When sugars from food are broken down by the many bacteria living in the mouth, acids are produced that gradually damage tooth enamel and lead to cavities. This is known as dental caries. Over time, this acid dissolves tooth enamel and causes cavities.
However, researchers at Aarhus University in Denmark have discovered that regular arginine treatment can significantly reduced the overall acidity levels in the mouth and prevent tooth decay.
Yumi Del Rey, microbiologist at Aarhus, said: ""Our results revealed differences in acidity of the biofilms, with the ones treated with arginine being significantly more protected against acidification caused by sugar metabolism."
Volunteers were then asked to instructed to dip the dentures in a sugar solution for 5 minutes, immediately followed by distilled water (as placebo) or arginine for 30 minutes, one on each side. This was to be repeated three times a day, with arginine treatment done on the same side each time.
Sebastian Schlafer, professor at the Department of Dentistry and Oral Health, explained: "The aim was to investigate the impact of arginine treatment on the acidity, type of bacteria, and the carbohydrate matrix of biofilms from patients with active caries."
After 4 days of this process, the biofilms were developed and the dentures were removed for detailed analysis. The researchers compared dental plaques grown on customized dentures on both sides of each participant's mouth using a special pH-sensitive dye called C-SNARF-4.
Additionally, the team also began to look into how arginine might be reducing acidity, by taking stock of which bacteria and sugars were present in each sample.
Biofilms treated with arginine showed lower levels of a sugar called fucose, while another sugar, galactose, was concentrated towards the outer surface of the biofilm, meaning both sugars were away from the tooth enamel.
After analyzing the DNA of bacteria present, the researchers found that arginine treatment significantly reduced a specific population of Streptococcus bacteria known to produce acid, while slightly increasing other bacterial strains that can metabolize arginine.
The scientists noted that while more research is needed into the arginine's effectiveness, the amino acid could be a promising new addition to oral hygiene products such as toothpaste or mouthwash.
Credits: Canva
Covid is returning, as the National Health Service, NHS UK warned that there has been a "bounce back" in respiratory viruses this winter, along with COVID too on the rise. While UK was already struggling with flu and norovirus on the rise, cases of COVID have also risen. The latest data from the UK Health and Security Agency (UKHSA) show that the number of patients in hospital beds with COVID per day has risen from 0.87 per 100,000, as compared with 0.77 per 100,000 the previous week.
NHS national medical director Professor Meghana Pandit said: “It’s clear that the worst is far from over for the NHS this winter, with hospitals again experiencing a rise in patients admitted with flu and other respiratory virus cases last week.”
Since the pandemic, there have been many variants of COVID. The virus has continued to evolve. Two new variants that caused the spike in cases in autumn were XFG, known as Stratus, and NB.1.1, known as Nimbus.
Stratus: It is a subvariant of Omicron variant and made of previous variants LF.7 and LP.8.1.2. It was first detected in a sample on January 27, 2025. Whereas, Nimbus was first detected on January 22, 2025. It also originated from the same omicron variant, which was the reason for spike in 2023.
The World Health Organization (WHO) describes stratus as a "variant under monitoring" after several countries in South East Asia reported a rise in new cases and hospitalizations with this variant being detected.
Among studies that focused on how symptoms appear together, fatigue stood out as the most consistently reported issue. It often occurred alone or alongside problems such as muscle and joint pain, brain fog, or breathlessness. Other symptom pairings that appeared frequently included loss of smell and taste, anxiety with depression, and various forms of musculoskeletal pain.
When researchers classified patients based on affected organ systems, respiratory problems were the most widespread, seen in about 47% of long COVID patients. Neurological symptoms followed at 31%, while gastrointestinal issues were reported by 28%. The authors stressed that these percentages reflect how often these clusters appeared within long COVID cases studied, not how common they are in the general population.
A smaller number of studies sorted patients by how severe their symptoms were, dividing them into mild, moderate, or severe categories using symptom scores, symptom counts, or quality-of-life measures. Three studies used clinical indicators for classification, including abnormal triglyceride levels and signs of restricted lung function on imaging.
As per the Centers for Disease Control and Prevention (CDC), here are the common COVID symptoms:
CDC says, look out for these signs:
Credits: Canva
While the National Capital is dealing with cold wave, the air quality also continues to worsen. In several parts of Delhi, the air quality reached severe category. The Indian Meteorological Department (IMD) also issued an Orange alert on Tuesday for cold wave. Dense fog also engulfed the city, with air pollution or the particulate matter being trapped in the air, turning the fog into smog.
The condition of air pollution in Delhi has remained concerning and the levels have spiked to 20 to 30 times above the safety levels recommended by the World Health Organization or the WHO. Many studies, including the official website of the Environmental Protection Agency (EPA), US notes that the small particulate matter found in the air pollution is directly linked to health problems. "Small particles less than 10 micrometers in diameter pose the greatest problems, because they can get deep into your lungs, and some may even get into your bloodstream," notes EPA.
The government is pursuing "smog eating" surfaces to deal with the pollution problem in Delhi. While it may sound like a strange thing in India, not to the world. In fact, in the Netherlands these were used to reduce local nitrogen oxide or the NO concentrations in the air, rather than greenhouse gas concentrations.
Smog usually contains a mixture of hydrocarbons, ozone, oxides of nitrogen and sulphur, and particulates. The pollution is caused by both photochemical reactions that involve sunlight, unburned hydrocarbons and nitrogen oxides, along with high concentrations of particulate matter, especially from vehicle exhaust, construction dust and biomass burning.
Environment Minister Manjinder Singh Sirsa announced "smog eating" surface as part of its pollution control plan, for which the government has also signed an MoU with IIT Madras.
The smog eating surfaces will be public surfaces coated with photocatalytic materials like titanium dioxide or TiO2 that is used to degrade pollutants.
The Deccan Herald quoted Dr Pradeep Singh, professor and head at the School of Advanced Chemical Sciences, Shoolini University, who explained: Photocatalytic materials are basically semiconductors. Substances like TiO2₂or zinc oxide are typically used as photocatalysts. When light falls on these semiconductor catalysts, electrons within them jump from one energy level to another, creating a hole. These photocatalytic holes and electrons subsequently form free radicals, which have strong oxidizing properties and can break down certain air pollutants with which they interact."
Smog contains mainly nitric oxide, nitrogen dioxide, sulphur dioxide, ozone, and particulate matter. When all of these interact with photocatalytic materials, gaseous pollutants convert into less harmful compounds, such as nitrogen oxides become nitrates or decompose into ions. This process is also known as pollutant mineralization.
Fun Fact: It was in 2017, when scientists in Italy developed a type of photocatalytic cement that could absorb pollutants and convert it into harmless salts. Palazzo Italia in Milan, opened in 2015, was the first building to use the cement.
As per Dr Ashish Moon, Head of the Civil Department at Smt Radhikatai Pandav College of Engineering, Nagpur, the impact depends on environmental conditions. He explained that titanium dioxide can locally reduce certain gaseous pollutants like nitrogen oxides under ideal conditions, rather than absorbing up to 50 percent of all harmful gases.
He also co-authored a paper in 2021, titled: Detailed Case Study on Smog Eating Tile, where he noted, "It is better to use it in liquid form than a powder. I have not come across any harmful interactions between TiO2 and particles or gases in the air." However, he also points out that how it will work in Delhi will depend on its weather conditions and atmosphere. "There should be enough UV light for the nanoparticles to activate," he said.
Will this arrangement really work? That is yet to see, although a 2023 Spanish study found that although this measure showed some improvement, but it only yielded a modest reduction in ambient NO2. We are yet to see how well it will work in Delhi and its neighboring city's pollution problem.
© 2024 Bennett, Coleman & Company Limited