Irregular Sleep, Drinking Caffeine After 3PM Could Raise Your Risk Of Heart Attack And Stroke
I’ve always struggled with inconsistent sleep, staying up late and waking up at different times each day. My love for coffee was also on an all-time high with trying all the season specials. But it is only recently, I learned how this irregular sleep pattern and caffeine could increase my risk of heart attack and stroke. Now, I’m prioritizing a consistent sleep schedule and cutting out caffeine after 3 PM to protect my heart.
A new, shocking study shows that irregular sleep patterns can greatly increase the risk of heart attack and stroke. But that's not all: the timing of your caffeine intake could also play a critical role in your cardiovascular health. If you are struggling with inconsistent sleep patterns and regularly sipping on caffeinated beverages late in the day, you may be unknowingly putting yourself at risk for serious heart-related issues.
For most people, sleep is something of a given and we often only consider ourselves as long as we get our required seven to nine hours. However, according to a recent study conducted by researchers at the Children's Hospital of Eastern Ontario, it may not be that long after all. The study, which included more than 72,000 participants, found that people with irregular sleep patterns—those who fall asleep and wake up at vastly different times each day—face a 26% higher risk of experiencing a heart attack or stroke. This increased risk persisted even for those who managed to get enough sleep. The study followed up participants for eight years to track heart events such as heart attacks, strokes, and heart failure. The conclusions were clear: irregular sleep, even if it's sufficient in duration, is a major cardiovascular risk factor.
The researchers found that those whose sleep patterns were highly irregular had a significantly greater chance of life-threatening heart issues. The more erratic your sleep schedule, the greater the risk, regardless of how many hours you sleep. In fact, people with irregular sleep schedules showed worse cardiovascular health outcomes, including higher rates of high blood pressure, elevated stress hormones, and poor blood sugar and cholesterol management.
Senior scientist Dr. Jean-Philippe Chaput said "sleep regularity may be more relevant than sufficient sleep duration in modulating MACE [major adverse cardiovascular event] risk." In the study, it shows that our bodies are comfortable with consistency, and a varied sleep schedule may interfere with other processes that keep us healthy, especially the heart.
Another daily habit that may be putting your heart at risk is caffeine consumption after 3 PM. According to Dr. Chaput, the experts emphasize the need for a healthy sleep schedule and avoiding caffeine late in the day. Caffeine can stay in your blood for up to eight hours, and its consumption later in the afternoon can disrupt your sleep cycle.
Consistent, good-quality sleep is necessary for maintaining healthy cardiovascular function, and the disruption of this by late-day caffeine intake exacerbates the risks posed by irregular sleep. When you drink coffee, tea, or other caffeinated beverages too late, the stimulant effect on your nervous system makes it harder to fall asleep at a regular time. This can lead to inconsistent sleep patterns, which, as we have seen, can be harmful to heart health.
Dr Chaput insists that humans need to adopt practices that contribute to regularized sleep habits. This can be attained by establishing a proper sleeping and waking schedule, eliminating afternoon intake of stimulants such as caffeine, and making your body clock coincide with the lifestyle one leads.
According to the experts, the disturbance due to irregular sleep patterns impacts more than one physiological process involved in the maintenance of the healthy heart. For example, poor sleep can be associated with increased inflammation of the body, weakened immunity, and altered regulation of blood sugar and cholesterol, all of which contribute to increased blood pressure and weakening endothelial function, both associated with an increased risk for cardiovascular diseases. Sleep also plays a very important role in regulating stress hormones. Poor or disturbed sleep results in increased levels of cortisol, the stress hormone, which increases blood pressure and can have negative impacts on cardiovascular health over time.
Scientists hypothesize that these disturbances trigger a series of negative effects that enhance the risk of developing chronic heart conditions, including hypertension, atherosclerosis, or even heart failure.
In order to protect your heart, experts recommend several proactive measures to improve your sleep patterns and lifestyle. First, maintain a regular sleep schedule whereby you go to bed and wake up at the same time every day, including weekends. Consistency will keep your body's internal clock in check.
Along with regulating your sleep, paying attention to your caffeine habits is just as important. To reduce your risk of heart disease and stroke, experts suggest avoiding caffeine after 3 PM. If you’re sensitive to caffeine, this rule becomes even more critical.
In addition, the introduction of stress-reducing activities like yoga or mindfulness can also be beneficial to lower cortisol levels, and therefore both sleep and heart health can improve. A diet rich in antioxidants, healthy fats, and low on processed sugars also helps maintain cholesterol levels and reduce inflammation.
Apart from the timing of caffeine and your sleep schedule, another very overlooked factor is the quality of your sleep environment. Scientists have long known that the environment in which you sleep has a huge impact on the quality of your rest. Poor quality of sleep, even if your sleep schedule is regular, can cause health risks that are very much the same as those that arise from irregular sleep patterns.
Here’s an additional tip: make sure your bedroom is conducive to restful sleep. This means keeping your room dark, quiet, and cool. A temperature of around 65°F (18°C) is ideal for most people. Consider investing in a comfortable mattress and pillows, and avoid screen time at least 30 minutes before bed to allow your brain to unwind.
Irregular sleep, in association with taking caffeine in late parts of the day, can risk heart attack and stroke, but a simple maintenance of a sleep schedule, the reduction of consumption of afternoon caffeine, and sleep environmental awareness can definitely safeguard one's heart along with total health.
Your sleep is more than just a time for rest; it's a vital component of your long-term health, and maintaining consistency in your sleep habits is one of the best things you can do for your heart.
Credits: Canva
A new study published in the Journal of the American Chemical Society offers critical insight into the biological mechanisms underlying type 2 diabetes. Researchers from the Indian Institute of Technology Bombay (IIT Bombay), in collaboration with IIT Kanpur and the Chittaranjan National Cancer Institute (CNCI), Kolkata, have identified a key trigger that accelerates the progression of this widespread disease: the structural protein collagen I.
Type 2 diabetes currently affects over 500 million people worldwide, and numbers are expected to rise sharply in the coming decades. The disease is primarily driven by a combination of genetics, lifestyle factors, and complex cellular mechanisms. At its core lies the dysfunction of pancreatic β-cells, the insulin-producing cells responsible for regulating blood sugar levels.
As diabetes develops, β-cells either fail to produce enough insulin or the body’s cells become resistant to it. A lesser-known yet crucial hormone, amylin, is also secreted by these β-cells and plays a vital role in managing blood sugar after meals. However, in diabetic conditions, excessive amylin production leads to misfolding and toxic clumping, which damages β-cells and accelerates disease progression.
In the latest study, the research team pinpointed fibrillar collagen I, a common component of the extracellular matrix, as a key factor driving the toxic aggregation of amylin. Found abundantly in connective tissues like skin and bones, collagen I is also present in the pancreatic environment—particularly in diabetic tissues where it is elevated.
“Every tissue is composed of cells and an extracellular matrix that provides structural support. In diabetic pancreatic tissue, this matrix, especially collagen I, becomes more prominent,” explained Prof. Shamik Sen, the study’s lead investigator from the Department of Biosciences and Bioengineering at IIT Bombay.
The researchers discovered that collagen I acts like a scaffold or platform, accelerating the misfolding and aggregation of amylin, which in turn damages β-cells. This discovery adds a new layer to understanding why the disease worsens over time, even with treatments targeting cellular pathways.
To investigate how collagen I interacts with amylin, the team used a suite of advanced biophysical tools. These included surface plasmon resonance to measure binding strength, atomic force microscopy to study molecular adhesion, thioflavin T fluorescence to track aggregation speed, and NMR spectroscopy to identify interacting regions of the molecules.
“Amylin almost coats the collagen fibres, forming stable, toxic aggregates that cells struggle to clear,” said Prof. Sen. The behavior of amylin on collagen fibres resembled trains moving on tracks—quickly and with destructive momentum.
Computer simulations by Prof. Prasenjit Bhaumik’s group at IIT Bombay confirmed that fibrillar collagen I accelerates the toxic aggregation process, offering further validation of the molecular interaction.
The team extended their study to biological samples from diabetic mice and humans. With the help of Prof. Hamim Zafar and Prof. Sai Prasad Pydi from IIT Kanpur, and Dr. Sankhadeep Dutta from CNCI, they analyzed single-cell data and tissue architecture.
The findings were striking: as diabetes progressed, both collagen and amylin levels rose, accompanied by damage to pancreatic islets—clusters of cells that house insulin-producing β-cells.
To test the functional impact, the researchers grew lab-engineered β-cells on collagen gels containing amylin. These cells showed increased oxidative stress, reduced insulin production, and higher rates of cell death, compared to controls grown without collagen or amylin.
This suggests that the extracellular environment, particularly collagen I, plays a central role in worsening β-cell dysfunction in diabetes.
The findings could explain why many diabetes treatments fall short—they overlook the external microenvironment contributing to disease progression. “Unless we disrupt the interaction between amylin and collagen, we may not be able to eliminate the toxic pancreatic environment,” said Prof. Sen.
Looking ahead, the team is working on cryo-electron microscopy (cryo-EM) models to visualize how amylin and collagen interact at the molecular level. They are also exploring 3D tissue engineering strategies to restore pancreatic function by replicating healthy extracellular conditions.
Credits Canva
As wildfires become an all-too-familiar headline across the globe, their visible devastation—scorched forests, lost homes, and displaced communities—often overshadows a more insidious threat: the impact of wildfire smoke on human health. While the immediate dangers of flames and evacuations are clear, a new study published in Nature Medicine reveals that wildfire smoke does far more than irritate eyes and throats. It can fundamentally alter the immune system, potentially making people more susceptible to illness long after the smoke has cleared.
The study, led by researchers from the Harvard T.H. Chan School of Public Health, found that people exposed to wildfire smoke exhibit changes in gene expression and immune function, even if they’re otherwise healthy. This suggests that the health consequences of wildfires may extend far beyond the immediate coughing, wheezing, and watery eyes that so many experience during fire season.
The research, led by Dr. Kari Nadeau of the Harvard T.H. Chan School of Public Health, provides the most detailed look yet at how wildfire smoke affects the body on a cellular level. By analyzing blood samples from 31 firefighters and civilians exposed to wildfire smoke and comparing them to 29 unexposed individuals, the study uncovered a complex web of immune changes.
People exposed to wildfire smoke showed a marked increase in memory immune cells—cells that typically provide long-term immunity. At first glance, this might seem beneficial, but the study also found elevated biomarkers of inflammation and immune activity, as well as changes in dozens of genes linked to allergies and asthma. In short, the immune system was not just activated—it was thrown into overdrive, potentially increasing vulnerability to illness.
Dr. Mary Johnson, the study’s lead researcher, explains, “Our findings demonstrate that the immune system is extremely sensitive to environmental exposures like fire smoke, even in healthy individuals. Knowing exactly how may help us detect immune dysfunction from smoke exposure earlier and could pave the way for new therapeutics to mitigate, or prevent altogether, the health effects of smoke exposure and environmental contaminants.”
Wildfire smoke is a toxic brew. It contains:
The ultra-fine PM2.5 particles are particularly dangerous. At less than 2.5 micrometers in diameter, they are 28 times smaller than the width of a human hair and can be inhaled deep into the lungs, enter the bloodstream, and affect organs throughout the body.
“These findings suggest that even short-term exposure to wildfire smoke can act as a biological stressor with long-lasting effects,” said Dr. Mary Johnson, lead researcher and environmental health scientist at Harvard. “That’s especially concerning as wildfire seasons grow longer and smoke plumes travel farther.”
One of the most striking findings of the study was the alteration of 133 genes related to allergies and asthma in those exposed to wildfire smoke. This genetic shift may help explain why people living in wildfire-prone areas often report more respiratory problems, even months after the fires have ended.
The study also found that smoke-exposed individuals had more immune cells affected by toxic metals, further increasing inflammation and the risk of immune dysfunction. These changes may make people more susceptible to infections, worsen existing respiratory conditions, and potentially contribute to the development of new allergies or asthma.
The United States, particularly western states like California, has witnessed a dramatic increase in wildfire frequency and severity. In 2023 alone, California experienced over 7,000 wildfires, with the California Department of Forestry and Fire Protection responding to nearly 590,000 related emergencies. The devastating January 2025 fire in Los Angeles County, which claimed 30 lives and scorched 40,000 acres, underscored the deadly toll of these disasters.
Climate change is a major driver, creating hotter, drier conditions that fuel longer and more intense fire seasons. As wildfires become more common, understanding and mitigating the health risks of smoke exposure is more urgent than ever.
Wildfire smoke can trigger a range of symptoms, from burning eyes and runny noses to persistent coughs and breathing difficulties. For people with pre-existing conditions like asthma, COPD, or eczema, exposure can lead to dangerous flare-ups.
But the risks extend beyond the lungs. Fine particulate matter (PM2.5) can enter the bloodstream, causing inflammation throughout the body. Studies have linked wildfire smoke to increased emergency room visits for heart attacks and coronary heart disease within 24 hours of exposure. There is also emerging evidence that PM2.5 can impair cognitive functions such as memory and attention, likely by inducing inflammation in the brain.
Experts emphasize the need for proactive measures as wildfire season peaks:
If evacuation orders are issued, follow them promptly—not just for safety from flames, but from the health threats the smoke carries.
As wildfires continue to reshape landscapes and communities, their invisible legacy—on our immune systems and overall health—demands urgent attention. The message from scientists is clear: wildfire smoke is not just an environmental nuisance, but a profound health hazard that can affect anyone, anywhere the wind blows. Proactive measures, informed guidelines, and continued research are essential to protect public health in an increasingly fiery world.
(Credit-Canva)
Recent years have seen a rapid rise in kids vaping all over the world. A popular habit among young teens as well as young adults, vaping is the act of inhaling aerosol from electronic cigarettes or vape. But this popular habit has cost the health and well-being of this 24-year-old, who took to social media to warn people about this habit, as reported by the People.
A young man is taking to social media with a serious warning for anyone who uses e-cigarettes. He claims that vaping caused him to suffer a heart attack at just 24 years old and has led to lasting lung damage. Through a series of TikTok videos, Jacob Temple from Kentucky is urging people to quit vaping right away.
Temple, who started vaping at age 12, now says his lungs are like those of a 70-year-old man. He explained that he has permanent scarring on part of his lungs, meaning he can never fully inflate or deflate them again. "It feels like I’m breathing through a straw constantly, always, just never getting enough air and there’s nothing that can be done," he shared. This damage means he'll forever feel like he's not getting enough oxygen.
Temple also revealed that his vaping habit directly led to a "minor" heart attack, specifically an anterior myocardial infarction. He described the terrifying experience, saying, "My whole body was fighting to stay alive at a certain point." While the physical damage to his lungs can't be fixed, he hopes his story will motivate others to stop vaping before it's too late for them.
Temple admits he still has "good days and bad days." On some days, he can be active with the help of his rescue inhaler. However, on other days, he can barely function and struggles to sleep. He reflected on his past habit, saying, "It was fun while it lasted, but now I am paying for it dearly." His struggle highlights the long-term, painful consequences of what might seem like a harmless habit.
In a 2021 BMJ Case Reports study, researchers explored the link between vaping spontaneous pneumothorax, which is when air leaks into the space between your lung and chest wall, causing the lung to collapse. They also presented a case study of a A 34-year-old man, who was a healthy weight, came to the emergency room struggling to breathe and experiencing back pain for a full day.
An X-ray of his chest showed a large collapsed lung on his right side. He had quit regular cigarettes three years prior and switched entirely to vaping. A more detailed CT scan revealed bullae (air-filled sacs) in his lungs, and he had to undergo surgery to remove part of his lung. Lab tests on the removed tissue showed mild inflammation.
There are many other studies like the same, prompting researchers and healthcare professionals to issue warnings.
Temple’s case is not an isolated incident; there are many who have suffered the same fate.
According to Heart Organization, quitting smoking or vaping for good can seem tough, but it's totally possible. Just take it one step at a time. Here are five easy steps to help you on your journey to a healthier life.
Choose a day within the next week when you'll completely stop. This is your "Quit Day"! Promise yourself and tell supportive friends you're quitting. Slowly cut down before this day.
You have options: go "cold turkey" and stop all at once, or cut down slowly each day. For example, reduce cigarettes from 20 to 10, then 5. Or take fewer puffs from each one.
Speak with your doctor. They can tell you if medicines or other support tools, like patches or gum, would make quitting easier for you. Get their personalized advice to help you succeed.
Get ready for your Quit Day! Have healthy snacks ready, like fruits or gum. Plan fun activities to keep busy when you feel like smoking. Try a walk, movie, or new hobby to keep your hands busy.
© 2024 Bennett, Coleman & Company Limited