How Long After a Tattoo or Piercing Can I Donate Blood?

Updated Feb 25, 2025 | 11:15 AM IST

SummaryAs per American Red Cross, in most states, a tattoo is acceptable if the tattoo was applied by a state-regulated entity. Which means the tattoo artist must be licensed and must practice following all the guidelines, using sterile needles and ink that is not reused. However, there are other sets of regulation too that supervises your eligibility. Find out here.
How long should i wait before donating blood?

Credits: Canva

Are you that kind of person who celebrates milestones of your life with getting a tattoo? These milestones could be anything, including the things you achieved, or the things you could not achieve but taught you a lesson. If you are this person, then you must have wondered if you can donate blood with all the tattoos on your body? There are lots of rumors on how can one donate blood, or if at all they are allowed to donate blood. So let's get into its nitty gritty!

As per American Red Cross, in most states, a tattoo is acceptable if the tattoo was applied by a state-regulated entity. Which means the tattoo artist must be licensed and must practice following all the guidelines, using sterile needles and ink that is not reused. The same is the guideline for cosmetic tattoos, which includes microblading of eyebrows. If it is done by a licensed artist in a regulated state, then it is acceptable.

However, if you got your tattoo in a state that does not regulate tattoo facilities, you must wait three months after it was applied.

The states that do not regulate tattoo facilities are:

  • Arizona
  • District of Columbia
  • Georgia
  • Idaho
  • Maryland
  • Massachusetts
  • Nevada
  • New Hampshire
  • New York
  • Pennsylvania
  • Utah
  • Wyoming

Body Piercing

Similar is the case with body piercings. It has to be done following the regulation, here the key is that the instrument used has to be a single-use equipment and disposable. Which means if you are getting it by a gun, or an earring cassette, they have to be disposable. In case you got your piercing with a reusable gun or a reusable instrument, you will be required to wait for three months.

Three-Month Wait Period

The reason behind the wait time is associated with the concerns of hepatitis, which could be easily transmitted from donors to patients through transfusion. All blood donations are thus tested for hepatitis B and hepatitis C, with several tests. However, not always are these tests are perfect, thus the three-month period is given.

What Dangers Loom Over?

Donating blood after getting a tattoo can be dangerous as unclean tattoo needle could carry bloodborne viruses, which are hepatitis B, hepatitis C and HIV. In 2020, the Food and Drug Administration (FDA) updated its guideline, making the wait time shorter from one year to three months. This is because if you contract a bloodborne illness, it could be detectable within the period of 3 months.

What else makes you ineligible to donate blood?

There are other reasons why you may not be allowed to donate blood. As per the American Red Cross, you are not allowed to donate blood if you have

  • hepatitis B or C
  • HIV
  • Chagas disease, which is a parasitic infection that kissing bugs cause
  • leishmaniasis, a parasitic infection that sand flies cause
  • Cruetzfeldt-Jakob Disease (CJD), a rare disorder that leads to mental deterioration
  • Ebola virus
  • hemochromatosis, which means extreme build up of iron
  • hemophilia
  • jaundice
  • sickle cell disease

As per the National Institutes of Health (NIH) Blood Bank, these conditions make you permanently ineligible from donating blood.

While there are certain conditions that makes your permanently ineligible, there are other conditions that makes you temporarily ineligible from donating blood. These include:

  • If you have a bleeding condition, and have issues with your blood clotting
  • If you have received transfusion from a person
  • If you have cancer. Here, the eligibility depend son the type of cancer you have
  • If you have recently underwent a dental or oral surgery. In such a case, you would have to wait for three days
  • If you had a recent heart attack, heart surgery or angina. You must wait for 6 months
  • If you are pregnant, you can only donate blood after 6 months after delivering your child

End of Article

Top 5 Infectious Diseases That Disrupted Healthcare System Worldwide In 2025

Updated Nov 30, 2025 | 06:00 PM IST

SummaryIn 2025, climate change, urbanization, and increased travel fueled the rise of infectious diseases worldwide. Respiratory infections, new COVID variants, tuberculosis, mosquito-borne illnesses, hepatitis outbreaks, and gastrointestinal infections affected millions. Many diseases returned with stronger strains, while others emerged in new forms, posing ongoing risks to vulnerable populations. Read on.
Top 5 Infectious Diseases That Disrupted Healthcare System Worldwide In 2025

Credits: Canva

In 2025, thanks to climate change, rapid urbanization, and frequent travels, new viruses, their strains, and infections have spread frequently. Infections have affect millions and some diseases have come back with their new strains, which have been more contagious, whereas other diseases are finding new ways to emerge.

As we look back at the year, which is about to end in just another month, let us look back at the top 5 infectious diseases of 2025.

Respiratory Infections

In 2025, respiratory infections were the most widespread, with new COVID-19 variants emerging every now and then. Along with this common flu too has emerged. This has weakened immunity and made elderly and infants, and people with comorbidities more vulnerable to the diseases.

The new COVID variants in India are linked with the JN.1 variant and its sub-variants like LF.7 and NB.1.8. The COVID variants in the UK which were active were XFG, NB.1.8.1, or known as the Stratus and Nimbus variants. Other variants were XFG.3, XFG.5, and XFG.3.4.1.

Tuberculosis (TB)

Tuberculosis still continues to be a major infectious disease in 2025, especially in countries like India. As per the World Health Organization (WHO), tuberculosis caused 1.25 billion deaths in 2023. It becomes the world's leading infectious disease after COVID-19.

Each day, close to 3,425 people lose their lives to TB, and close to 30,000 people fall ill with this preventable and curable disease. About 10.8 million people got TB in 2023, which include 6 million, 3.6 million women, and 1.3 million children.

Dengue and other mosquito-borne infections

Mosquito-borne diseases like dengue, chikungunya, malaria, and Zika continued to rise in 2025. The reason being changing weather patterns. Dr Sanjeev Bagai, Chairman of Nephron Clinic, and Senior Consultant Pediatrician and Nephrologist points out that earlier the mosquito-borne diseases were seasonal, however, due to rapid urbanization and climate changes, these diseases have stayed all round the year.

Hepatitis Infections

Hepatitis B and Hepatitis C are among the most common Hepatitis infections in 2025. However, there have been outbreaks of Hepatitis A and E in unsafe water and food. Chronic hepatitis can also damage liver and also lead to cancer. It is a concern because it spreads through contaminated food, unsafe water, blood, and sexual contact. While many people may not show symptoms until serious liver damage occurs.

Symptoms also include jaundice, dark urine, fatigue, nausea, and abdominal pain.

Gastrointestinal Infections

Food- and water-borne infections are still common across the world. Illnesses like salmonella, cholera, rotavirus, and norovirus often spread in areas where hygiene, sanitation, and food safety are poorly maintained.

Why are these infections risky?

They can spread extremely fast, especially among children and older adults. Severe diarrhea and vomiting can lead to dangerous dehydration if not treated in time.

What symptoms should you look out for?

Persistent diarrhea, vomiting, stomach cramps, fever, and signs of dehydration. The best prevention is simple: drink clean water, wash hands regularly, and eat properly cooked food.

End of Article

Cancer Risk and Your DNA: What’s Hereditary and What’s Not?

Updated Nov 30, 2025 | 04:00 PM IST

SummaryThis article was authored by Dr Syeda Zubeda Medical Geneticist and Senior Genetic Counselor, Strand Life Sciences
Cancer Risk and Your DNA: What’s Hereditary and What’s Not?

(Credit-Canva)

When we think about cancer risk, it’s natural to wonder, “is it genetic?”

The truth is, sometimes it is, but in many cases, cancer develops from a mix of lifestyle, environmental factors, and DNA changes that occur over a lifetime. Understanding the difference between inherited genetic risks and those acquired along the way can help people make smarter decisions about screening, prevention, and treatment, and empower families to take proactive steps for their health.

Inherited genes or life choices?

Cancer arises from a series of changes/mutations in cells that disrupt normal growth control. Many of these changes happen over a person’s lifetime, influenced by exposures (like tobacco, UV rays, infections), aging, and random DNA errors. These are called “somatic mutations” and occur in our tissues—they are not inherited, and are not passed to children.

By contrast, a smaller fraction of cancers are influenced by inherited mutations called “germline mutations”; these are changes in the DNA that you are born with, and are present in every cell of your body. These mutations can predispose someone to cancer by impairing DNA repair, controlling cell division, or through other mechanisms. Approximately 5–10% of all cancers are thought to have a strong hereditary component.

So, while your DNA can influence your cancer risk, most cancers don’t occur because of an inherited gene defect. And even when a germline mutation is present, environment, lifestyle, and chance usually play significant roles in whether cancer actually develops.

Recognizing hereditary cancer syndromes

When should we suspect hereditary cancers? Here are red flags:

A strong family history of cancer, especially the same type (e.g. multiple members with breast cancer, or several relatives with colon cancer).

  • Early-onset cancer, e.g. diagnosis before the age of 50 or 40 years.
  • Multiple primary cancers in the same person (e.g., ovarian + breast).

Rare cancers or specific tumor types tied to known syndromes (e.g. medullary thyroid cancer, male breast cancer, pancreatic cancer in some families).

Known syndrome features, such as colon polyps and colon cancer in Lynch syndrome.

In such cases, genetic testing can identify mutations in genes like BRCA1/2, Lynch syndrome genes (MLH1, MSH2, MSH6, PMS2, EPCAM), TP53, PALB2, and others. Identifying carriers has implications for targeted screening (e.g. colonoscopic surveillance or mammography at regular intervals), preventive surgery like mastectomy, and sometimes therapy in case cancer does develop.

How do hereditary mutations lead to cancer?

Imagine your cells are factories, following a strict set of instructions (your DNA). Inherited mutations can mean that a “safety check” is broken from the start. For example:

A mutation in the BRCA1 or BRCA2 genes weakens the cell’s ability to repair DNA. Over time, unrepaired damage accumulates, raising the risk of developing breast, ovarian, prostate, and pancreatic cancer.

Mutations in DNA mismatch repair genes (as in Lynch syndrome) allow errors during DNA copying to persist, boosting mutation load and increasing the risk of developing colon, endometrium, stomach, and other cancers.

But even when a high-risk mutation is present, cancer doesn’t appear overnight. Additional “hits”, or more mutations, microenvironment changes, hormonal exposures, or lifestyle factors need to typically accumulate before cells turn cancerous.

Why does hereditary information matter?

You might ask: if it’s a small percentage of cancers, does knowing about hereditary risk make a difference?

The answer is, yes, absolutely. Knowing your hereditary risk of cancer has some important benefits:

Prevention & early detection: If you carry a pathogenic mutation, you can undergo more frequent surveillance, chemoprevention (e.g. tamoxifen for breast cancer), or risk-reducing surgeries (e.g. prophylactic mastectomy or oophorectomy).

Therapeutic choices: Certain inherited mutations also influence how cancers respond to therapy. For example, PARP inhibitors are effective in tumors with BRCA-related homologous recombination deficiency (HRD). Thus, knowing that a patient has a germline BRCA mutation may alter drug selection.

Family risk & cascade testing: Identifying a hereditary mutation allows cascade testing, where close relatives can also get genetic testing done. This helps them understand risks and take prevention measures before cancer develops.

Clinical trial access: Many modern trials require knowledge of inherited DNA defects. Patients with known germline mutations may qualify for therapies designed precisely for those DNA repair vulnerabilities.

However, it is also important to understand that absence of a germline mutation does not mean absence of risk. Many cancers are driven purely by somatic mutations, and many hereditary variants remain undiscovered or classified as Variants of Uncertain Significance (VUS). Testing negative for known genes does not guarantee immunity.

Also, hereditary risk is not absolute: a person may carry a mutation but never develop cancer, due to protective factors like healthy lifestyle, background genetics, or luck. Interpretation must be done thoughtfully, ideally with genetic counselling.

Conclusion

The relationship between cancer risk and our DNA is not simple.

While hereditary mutations play a role in a minority of cases, their impact on prevention, therapy, and family planning can be profound. Knowing whether cancer “came from your DNA” is often less important than using that knowledge wisely—both for patients and their relatives.

As we move deeper into the era of precision medicine, clinicians and patients alike should appreciate that hereditary and somatic worlds coexist, and that DNA insight is a tool—not a verdict.

End of Article

China Performs First Living-Patient Gene-Edited Pig Liver Transplant

Updated Nov 30, 2025 | 03:00 PM IST

SummaryChinese doctors achieved the world’s first gene-edited pig liver transplant into a living human, showing the organ could function for weeks and support metabolism. The patient later developed a serious immune-related complication called xTMA, leading to graft removal. The case proves feasibility but highlights major challenges before pig organs can be used widely.
China Performs First Living-Patient Gene-Edited Pig Liver Transplant

Credits: iStock

In a medical first, surgeons in China have successfully transplanted a gene-edited pig liver into a living human to temporarily support his failing liver. The procedure showed that a pig liver can function inside the human body for several weeks and act as a “bridge” for patients who have no other treatment options.

The patient was a 71-year-old man with severe hepatitis B–related liver cirrhosis and a large liver cancer tumor. His condition made traditional surgery or a human liver transplant impossible. With no donor organs available and his health rapidly worsening, doctors decided to try the experimental pig liver transplant under compassionate use.

How the Pig Liver Was Engineered

The donor organ came from a specially bred Diannan miniature pig. Scientists had made 10 specific genetic changes to the animal so its liver would be more compatible with the human body.

These changes included:

  • Removing pig genes that usually trigger strong immune rejection
  • Adding seven human genes to help the liver work smoothly with human blood, immunity and clotting systems

Once the liver was connected to the patient’s blood supply, it began working immediately. It produced bile, supported metabolism, made important proteins like albumin and helped with blood clotting. Early tests showed stable liver and kidney function, and there were no signs of sudden or severe rejection, which is usually the biggest challenge in pig-to-human organ transplants.

A Serious Complication Emerges

But the case also revealed a major challenge for future xenotransplants. After about a month, the patient developed a condition called xenotransplantation-associated thrombotic microangiopathy (xTMA).

This complication caused:

  • Breakdown of red blood cells
  • A drop in platelets
  • Activation of the complement system (part of the immune response)
  • Small blood clots forming in blood vessels

Doctors tried multiple treatments, including blood thinners, a complement-blocking drug (eculizumab) and plasma exchange. However, the condition continued to worsen.

On day 38, the medical team decided to remove the pig liver to protect the patient. Fortunately, during this period, the patient’s remaining left portion of his own liver had grown and was able to take over enough liver function. After the pig liver was removed, the signs of xTMA gradually resolved.

The patient later developed complications unrelated to the xenotransplant — mainly repeated bleeding in his digestive tract due to his pre-existing liver condition — and he died on postoperative day 171.

What This Means for the Future

Researchers conclude that this groundbreaking case proves pig-to-human liver transplantation is technically possible and can meaningfully support patients for weeks. This offers hope for people with acute liver failure or advanced liver cancer who have no donor organs available.

However, major barriers remain. The biggest challenges highlighted include:

  • xTMA
  • Blood clotting incompatibilities
  • Overactivation of the immune system
  • The need for better gene-editing strategies

Scientists say more work is needed before such transplants can become routine. But this case sets an important foundation for future clinical trials and brings the medical world a step closer to using animal organs to save human lives.

End of Article