Can Damaged Sperm Lead To Pregnancy Complications?
Pregnancy is usually a time of happiness and hope, but it also brings in the unexpected. While there is much talk placed on the health of the expectant mother, the quality sperm coming from the father could dramatically change the outcome of pregnancy. The latest study suggests the risks of sperm DNA damage, even increasing the risks of complications preeclampsia and birth prematurity.
In a groundbreaking research study conducted by scientists from Lund University in Sweden, scientists discovered that DNA damage in sperm increases the risk almost up to double that of preeclampsia, this is a dangerous condition that may arise during pregnancies characterized by high blood pressure. In addition, DNA anomalies also increase the risk of premature births, and this further entails increased related adverse health outcomes for infants born through such conditions.
The next step would be to find out which group of men respond best to methods to prevent and treat sperm DNA damage, and to test these methods to prevent pregnancy complications," said Dr. Amelie Stenqvist, a lecturer at Lund University. According to this study, a significant message is put forward that paternal health assumes an important role in a successful pregnancy.
It focused its research on men, specifically whose sperm contained high levels of DNA fragmentation. For instance, some 20% to 30% of babies born via in vitro fertilization have fathers whose sperm contains damaged DNA. The DNA fragmentation index, an indicator to assess the percentage of DNA damage in sperm, indicated that when the percentage of sperm with a DFI above 30% was observed, they had almost no chance of resulting in natural conception. Even a DFI greater than 20% showed that the chances of getting pregnant are highly risky as the risk factor for pregnancy complications like preeclampsia is much high.
Uncommon Complications during Pregnancy
The most alarming complication during pregnancy is preeclampsia. It affects approximately 5% to 8% of pregnancies worldwide, which can cause fatal conditions for both the mother and the baby. The new findings now point out that sperm DNA damage may contribute to this condition, especially if it is due to assisted reproductive techniques such as IVF pregnancies. The research found that a DFI above 20% doubled the risk of preeclampsia from a mere 5% to almost 11% per.
Apart from causing preeclampsia, DNA fragmentation in sperm is also known to increase the risk for prematurity. Most premature babies experience respiratory, neurological, and developmental complications. Therefore, some degree of early intervention might be important for prospective parents.
Some of the rarer, though serious complications include placental abruption, which is the separation of the placenta from the uterine wall and intrauterine growth restriction, a condition by which the baby does not grow normally in the womb. These conditions though rare are potentially catastrophic both to the mother and the child. Results from this study may help in establishing the contribution of the father in such pregnancies.
Further study into sperm DNA damage is of urgent interest with regard to its consequences for pregnancy outcomes. According to Professor Aleksander Giwercman of Lund University in the field of Reproductive Medicine, "the analysis of DFI should be introduced as routine test in all fertility clinics.". "It could give answers to couples who are having difficulties with infertility, but our latest result also shows that DFI analysis can be a method to identify high-risk pregnancies, explained Giwercman.
For many, DNA fragmentation in sperm is often treatable. Common causes are oxidative stress, age, smoking, being obese, and infections. Addressing these elements will likely reduce DNA damage in sperm for men, raising the chances for a healthy pregnancy and baby.
Overall, the study importance should take into consideration paternal as well as maternal health towards reaching for a healthy pregnancy. Though DNA fragmentation in the sperm is supposed to increase the risk factors for complications in pregnancies, the advances into novel treatment approaches and tests are likely to alleviate complications in many families. Thus the findings of this study offer optimism and pave a pathway to more holistic fertility treatments in the future.
Credits: Canva
Bird flu viruses pose a particular danger to people because they can continue multiplying even at temperatures that would normally stop most infections. Fever is one of the body’s natural ways to slow viruses, yet new research from the universities of Cambridge and Glasgow shows that avian strains can survive what should be a hostile environment.
The study, published in Science, identifies a key gene that influences how well a virus copes with heat. This same gene moved into human flu strains during the 1957 and 1968 pandemics, allowing those viruses to spread more easily.
Human influenza viruses infect millions each year. The seasonal strains we see most often fall under influenza A and tend to do well in the cooler temperatures of the upper respiratory tract, which is close to 33°C. They are less suited to the warmer, deeper parts of the lungs, where temperatures reach about 37°C.
As per Science Daily, when the body cannot slow an infection, the virus continues to multiply and spread, which can lead to more serious illness. Fever acts as a protective response, pushing body temperature as high as 41°C. Until now, the exact reason why fever slows some viruses but not others has been unclear.
Avian influenza behaves differently. These viruses usually grow in the lower respiratory tract, and in their natural hosts, such as ducks or seagulls, they often infect the gut. Temperatures in these areas can reach 40°C to 42°C, which helps explain their greater tolerance to heat.
If left unchecked, a virus can move through the body and cause significant harm. Fever is one of the body’s most familiar defence responses and can raise the core temperature to levels that inhibit many pathogens. Scientists have long known that some viruses withstand these temperatures, but the reason behind this resistance has remained uncertain.
Avian flu strains show a clear advantage in hotter environments. They thrive in the lower airways and, in birds, survive in the high heat of the gut. These features distinguish them from human influenza strains, which prefer cooler tissue.
Earlier studies in cell cultures hinted that avian flu copes better with fever-range temperatures than human strains. The new research offers direct evidence from animal experiments, helping explain why fever is effective against some types of influenza but far less useful against others.
Researchers from Cambridge and Glasgow recreated fever-like conditions in mice to examine how different viruses responded. They worked with a lab-adapted human influenza strain known as PR8, which does not pose a threat to people.
Mice do not typically develop a fever from influenza A, so the scientists raised the temperature of the environment to lift the animals’ body temperature.
The findings were striking. When body temperature rose to fever levels, the human-origin virus struggled to replicate, and the infection weakened. Avian influenza behaved very differently. Raising the temperature did not stop the virus from multiplying, and a small increase of only 2°C was enough to turn a normally severe human-origin infection into a mild one.
The study also identified the PB1 gene as a major reason why bird flu can tolerate heat. PB1 helps the virus copy its genetic material inside infected cells. When viruses carried an avian-type PB1 gene, they were able to endure high temperatures and still cause severe disease in mice. This matters because avian and human flu viruses can exchange genes when they infect the same host, such as pigs.
Dr. Matt Turnbull, the study’s first author from the Medical Research Council Centre for Virus Research at the University of Glasgow, explained that this gene swapping remains a major concern for emerging influenza strains. He noted that similar exchanges occurred in 1957 and 1968, when human flu viruses replaced their PB1 gene with one from an avian strain. According to the researchers, this may help explain why those pandemics were so severe.
Credits: Gemini
In moments where life seems to slip away, many people describe seeing a bright tunnel with a strong light shining at the end. The image feels almost otherworldly. Whether it happens during major surgeries, car crashes, or sudden accidents, people from different places and backgrounds share accounts that sound strikingly alike. Films, novels, and personal stories often mention this same vision during a near-death experience. While some link it to a glimpse of the afterlife, there may be a scientific explanation for why the mind creates this scene.
Is it a sign of something beyond the physical world, a reaction of the mind in distress, or part of how the brain behaves as it shuts down? Here is what researchers have learnt.
Yes. Scientists agree that many people do report seeing a tunnel of light when death is close. Even though death is certain, much about it still feels unclear. For generations, people have tried to understand what takes place in those last moments. Only in recent years, as medical care has advanced, have researchers been able to look more closely at near-death experiences, also known as NDEs, which occur when someone comes dangerously close to dying.
One of the most repeated features of NDEs is the bright tunnel, a sight described by millions. It is not a quick trick of the mind. People often speak of it as deeply emotional and unforgettable. This leads to difficult questions. Does this vision suggest something beyond physical life, or is the brain responding to extreme stress in its final effort to survive?
When someone nears death, the body begins to change very quickly. Vital functions start to drop. The heart may slow, reducing the amount of oxygen that reaches the brain. Body temperature can fall, and breathing may become weak or uneven. Along with these physical changes, the brain also reacts in its own way.
Also Read: How Post Malone Lost 55lbs Just By Cutting Soda And Ditching Junk
A team at the University of Michigan studied what happens in the brain as a person dies. They examined four people who were removed from life support and found that two of them showed a strong surge of brain activity right before death.
The pattern of activity was similar to what occurs when a person is awake and using higher thought. These bursts were produced by gamma waves, which are linked to conscious processing. In one patient, the rise in gamma activity was nearly three hundred times higher than normal.
Jimo Borjigin of the University of Michigan suggested that this might show a form of hidden awareness that becomes active just before death.
Professor Borjigin explained that some people near death may recall seeing or hearing things or may feel as though they are watching their body from above, or even moving through space. She said her team may have identified the basic brain steps connected to this type of hidden consciousness.
She added that future research needs to involve people who survive such events, so their brain activity can be compared with their own descriptions of what they experienced.
Another study in the Journal of the Missouri State Medical Association also explores how consciousness may shape near-death experiences. The researchers note that there is still much to learn about how the brain creates awareness and how that awareness influences what people see or feel as they approach death.
Credits: iStock
2025 was the year of viral health claims. These claims had shock-value, but often were half-baked theories, which spread faster than facts. At Health and Me, we made it a mission to burst health myths, and help our readers make better and healthier life choices. Here is a recap of the myths we debunked this year.
The pink salt, lemon and water drink went viral on TikTok as a “metabolic reset.” Its simplicity made it tempting, but there is no scientific evidence that it burns fat or suppresses appetite.
Nutritionists warn that excess sodium can raise blood pressure and cause bloating. Pink salt also lacks iodine, making daily consumption risky for thyroid health. Investigations and dietitians have repeatedly confirmed that this drink does not boost metabolism or detox the body. The trend particularly targeted women seeking quick fixes, but experts remind that weight loss still relies on balanced eating and consistent movement.
A June 2 viral reel claimed that common painkillers raise heart risks by 20 percent, cause fertility problems, harm mental health, and act as “neurotoxins that kill the nervous system.” The influencer added that taking ibuprofen during periods “cuts off communication between the uterus and brain.”
Experts clarified that painkillers are not neurotoxins and do not interfere with the nervous system. They work by inhibiting enzymes responsible for producing pain-related chemicals. No part of this process kills nerves or blocks communication between organs and the brain.
On fertility, reproductive specialists at Instituto Bernabeu and findings from a 2016 prospective cohort study confirmed that standard painkillers like paracetamol, ibuprofen, aspirin, and acetaminophen do not reduce fertility or affect the ability to conceive. In fact, ibuprofen is often used to ease severe menstrual cramps caused by underlying conditions such as endometriosis, which itself may influence fertility.
We also tackled a long-standing myth many couples quietly worry about. A large number of men believe that producing semen automatically means they have healthy sperm.
Senior IVF specialist Dr Beena Muktesh reminded us that fertility is not about semen production but sperm quality. Sperm count, movement, and shape determine whether conception is possible. Even semen that appears normal in volume or texture can contain poor-quality sperm or show signs of infection or inflammation.
A simple semen analysis can reveal key issues. Low count, weak motility, abnormal shape, and pH imbalance can all affect fertility despite regular ejaculation. The takeaway is clear: semen production alone is never a measure of reproductive health.
Health Secretary Robert F Kennedy Jr. claimed that aluminum in vaccines triggers food allergies, echoing a belief that resurfaced across social media.
Aluminum is an adjuvant that strengthens immune response and has been safely used for decades. It is found in vaccines that protect against diphtheria, tetanus, HPV, hepatitis, pertussis, and more.
While a 2022 study explored a possible link between aluminum exposure and asthma, it also stressed the need for more research. A large study from Denmark in 2023 found no such link, and the American Academy of Pediatrics clearly stated that aluminum in vaccines does not cause food allergies. Genetics and delayed.
One popular reel claimed that the “actual treatment” for ADHD lies entirely in food and nutrition. While diet does influence brain health, experts highlight that ADHD cannot be cured solely through food.
Neurologists acknowledge the role of nutrition in managing symptoms, especially through gut health and nutrients such as fibers, inulin and antioxidants. Some studies show that zinc, iron or certain dietary changes may reduce symptom severity. However, all research agrees that diet cannot cure the condition. ADHD requires a combination of therapy, behavioral strategies and, when needed, medication.
© 2024 Bennett, Coleman & Company Limited